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An asymptotic (over a large internuclear distartbepry of two-electron exchange
in collision of a multielectron atom and multiphharged ion is constructed. In the
framework of the quasirelativistic Dirac-Breit apgimation the matrix element of
two-electron exchange interaction is analyticalljcalated. This approach allows to
take into account the relativistic effects conndatéth the magnetic and retardation
interelectron interactions. In the nonrelativishimit the matrix element obtained

proceeds to the result of paper [6].

Introduction

Processes of heavy patrticle collisions with
forming of vacancies in inner shells of atoms
form the basis of many widely applicable
practical methods of quantitative and qualita-
tive analysis of matters, such as a Auger-
spectroscopy, photo- and x-ray electron spec-
troscopy, electron and proton x-ray spectros-
copy etc. The set of these processes is one of
the main information sources about the struc-
ture and properties of inner shells of atoms.
Therefore, detailed experimental and theoreti-
cal study of various collision processes of
forming and decay of vacancies in inner shells
of atoms is of the great applied and funda-
mental importance.

The collisions of the multiply charged ions
B»*(Z, >>1) with neutral atomsA with
large performance can lead to forming of two
and more vacancies in inner shellsfofUn-
der favourable conditions the mechanisms of
nonadiabatic bound cause multielectronic
transitions with effective cross-sections
10 -10"cm*. In symmetrical systems
A+ A*" with a completely stripped ("bare")

ion A** forming of two vacancies in thig-
shell can occur at the expense of processes of

two-electronic recharge
A+ A% LA™+ AP (1?) (1)

at distances that are larger than sizes of a

96

united atom. Also, other more complicated
mechanisms of forming of two vacancies in
K-shell and higher shells are possible. If the
two-electron vacancies are forming due to
nonadiabatic two-electron transitions, the cor-
relation effects play an essential role and the
consideration of the problem is hardly possi-
ble in the framework of approximation of
one-electron molecular orbitals. Furthermore,
if the collision energy is not too large, the
connection of processes with inner-shell elec-
trons and of similar processes where the tran-
sitions execute by outer electrons is observed.
Unfortunately, all these phenomena are little
studied, and for processes including highly
charged ions and bare nuclei are not investi-
gated at all. This situation is a surprising ex-
ample of inertia in a theoretical field in the
face of deficiency of experimental data that is
not of the principal character and very likely
connected with the difficulties in construction
of sources of multiply charged ions and for-
mation of beams of rather slow particles. In
last decade in this range of studies the tar-
geted work is carried out (see, for example,
[1, 2]), and the creation of the theory of mul-
tielectronic processes in ion-atomic and ion-
ionic collisions is one of the most important
problems.

In this paper the process of exchange of
two electrons at collision of the multielec-
tronic atomA with the multiply charged ion

B** we shall study on the elementary exam-



HayxoBuii BicHuk Ykropoxcskoro yniBepcutery. Cepis @isuxa. Ne 22. — 2008

ple of collision of He-like ionA“™" (e ,e, )

with the stripped nucleus; for the helium atom
anda-particleZ, =7, = 2

A% (g 8,)+ B>

S AT HB T ge). ()

Nevertheless, developed below theoretical
ideas about physical features of two-electron
exchange are of the general character. The
formal construction of the theory will be
given in the form, suitable for the description
of collisions of arbitrary atomic particles.

Since the binding energy of inner-shell
electrons rapidly increases with increasing
nuclear chargeZ, (i =a,b), at tight colli-

sions of heavy nuclei with own atoms the in-
ner-shell electrons fall in the two-centre po-
tential

2 2

N Z. e
V,()=—"3—- b
r.l r.2

, Ty :‘ft F?/Z‘

of the united systemA”** + B** with form-
ing of a heavy quasimolecule.

The traditional description of processes
with rearrangement of electrons at slow ion-
atomic collisions is based on the introduction
of the matrix element of the two-electron ex-
change interaction.

General structure of the matrix element
of two-electron exchange interaction in the
Dirac-Breit approximation

The process of the electron capture at colli-
sion of He-like ionA*2™?* and bare nucleus
B“* can be realized either as a result of two

successive one-electron transitions in one col-

lision event including of intermediate state
A(Za—1)+ + B(Zb_1)+:

A(Za—2)+ +sz+ - A(Za—l)+ +B(Zb—l)+ R

~ AT +BH (g e)), (3)
or as a result of the straight two-electron tran-
sition in points of quasi-crossing of adiabatic
potential curves of original and final states of
reaction (2) in one collision.

The first mechanism (3) is simpler and
studied much more than the simultaneous
transition of two-electrons from one nucleus
to the other one (reaction (2)). The studies of
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resonant two-electron capture (in collision of

atomA and two-charged ioA™" of the same
chemical element), carried out in [3, 4], have
shown that the process of exchange of two
electrons in a direct way (2) comprises a
number of interesting features that are not in-
herent in the mechanism of serial drift of elec-
trons from atomA to ion A*". In this sense
the nonresonance exchange of two electrons
(in collision of different atom and ion) is not
an exception (see [5, 7] and review [8]).

In adiabatic range of collision velocities
the capability of a qualitative analysis of the
transitions dynamics in reaction (2) yields the
approach based on separation of the so-called
ranges of non-adiabaticity [9]. Adiabatic evo-
lution of the electronic subsystem on quasi-
molecular potential curves leads to the fact
that the probabilities of transitions between
levels separated by considerable energy inter-
val are exponentially small. The nonadiabatic
transitions are localized in small vicinity of
crossing pointR, of diabatic quasimolecular

potential curves of original and final states of
process (2). In each of such vicinities the
adiabatic potential curves form the quasi-
crossing, and spacing interval between poten-
tial curvesAE(R )at R, is equal to the matrix
element of the exchange interactidifR of)
two-electron diabatic stated\(a™2* + B#*

and A%* +B(% A%

The large values of total cross-sections of
two-electron capture allow to assume that the
process (2) is determined by transitions at
large enough internuclear distandeslit en-
ables to carry out the analytical investigation
in asymptotic approximation, as was done in
all of the above mentioned articles [3]-[8].

For asymptotic interatomic distances the
main purpose of analytical investigation of
process (2) is the determination of the matrix
element of the two-electron exchange interac-
tion AE(R). In the general nonresonance case

(Z, #Z,) the valueAE(R )is determined as
the doubled matrix element
H a4 (R) = (W, |H|W¥,) = AE(R)/2 of the elec-
tron Hamiltonian H between the electron
wave functions ¥,, Y, of original

AlZ2* 1 B4 gnd final A%=* + B%2* dia-
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batic states of quasimolecule.

At the same time, in all of the papers
guoted above [3]-[7] when determining the
parameters of particle interaction in two-
electron exchange it was supposed that the
electrons and nuclei interact instantaneously.
The retardation connected with the finiteness
of the velocity of lightc was not taken into
account. However on large internuclear sepa-
rations R, at which the propagation time of
interaction R/c becomes of the same order

with a mean time of electron transitions, be-
sides the "instantaneous" Coulomb interaction

e?/r,, it is necessary to take into account the

effects of retardation leading to arise of the
additional terms in the operator of interelec-
tron interaction. If in reactions (1), (2) the nu-
clear charges of both colliding particles are

large, so thatZ, < :(Wherea=e2/hc is the
fine structure constantZ,, is the greater of
nuclear chargesZ,, Z,), and the electron

capture takes place from internal (not optical)
shells, alongside of retardation effects it is
necessary to take into account the essential
deviations of the angular and spin moments
from LS-coupling scheme, and also relativis-
tic character of motion of rapid inner-shell
electrons in heavy guasi-molecule

(AB)%*%72,
There are some ways of taking into ac-

count the relativistic effects in a problem of
calculation of the matrix elemedE(R . ) a

case of not too heavy He-like ions%2*

and bare nucleiB®#" in the nonrelativistic
Hamiltonian of the two-centre system
A%"2* + B%* it is possible to introduce the
additional members from the Breit-Pauli
Hamiltonian [11]. When they are small
enough, they can be taken into account in the
perturbation theory.

The alternate approach apparently reason-

able for heavy quasi-moleculg@AB)%*%2
with the total charge of nucle, +Z, > 137
consists in constructing the asymptotic (on
large internuclear distances) theory of process
of two-electron exchange (2) on the basis of
the Dirac-Breit equation [11]. Such approach

allows to take into account the orbital and
spin degrees of freedom of active electrons,
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most natural for heavy atomgj-coupling

scheme of the angular and spin moments, and
also effects of retardation of interelectronic
interaction at larg&.

For stationary states the quasirelativistic
wave Dirac-Breit equation describing motion
of two interacting one another electrons in the
field of two fixed Coulomb centres with

charges Z, and Z, is of the form
(h=e=m, =1):
HY = (H,+H, +V)¥ =E¥,
N - Z, Z
H,(r,)=ca,p,+ ? |__a__b' (4)
lia  fip

Here W=Y(r,,i;,;R) is the 16-component
wave function,E is the total energy of two
electrons, including their rest energy; the in-

dexesa, b number the nucleiA%*, B%"
with chargesZ, and Z,, respectively; the

index i = 12 distinguishes quantities, relating
to the first and second electrorR®;is the vec-
tor between nucleir; is the vector joining the
centre of segmerR with thei-th electron;r;,
andr,, are the distances from th¢h electron
to nuclei A%* and B%", respectively;
{a,.8} and{a,,p,} are two commuting sets
of the Dirac matrices of the first and second
particles; I—AIi is the Dirac Hamiltonian of the
two-centre problemZ,eZ,, describing mo-
tion of thei-th electron in the field of two
fixed nuclei with chargesZ, and Z, sepa-
rated by distanc® The symbolV =V (1;,15)

in (4) indicates the potential of the interelec-
tron interaction:

v=_tv,,
£P)
Vg = _ 1 a,a, + (a1r12)ga2r12) . (5)

2r, Py

The first termr,," describes the instanta-
neous Coulomb interaction of electrons, and
the Breit operatorVy is sometimes repre-

sented in the form of the sum of magnéfj¢
and retardatiotV, interactions:
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VB =Vm +Vr ’ (6)

Vi == (@ha5) /13
N PP
V, = _E(alml)(GZDZ)rlZ =

1. . a.t ) (a.r,
— __|:a,10,2_( 112)2 2 12)j|. (7)
2r;, o

wherer,, is the distance between electrons.

Calculation of the matrix element of
two-electron exchange interaction

As it was already mentioned in the previ-
ous section, the matrix element of the two-
electron exchange interaction is given by

AE(R):2<HJa|I:||LIJb>. (8)

As well as in a nonrelativistic case [4] it is
possible to represent the two-electron atomic
wave functionsW, ,(;,r, )in the form of lin-

ear combination of products of one-electron
functions (orbitals)yy(r )

Wa = () Y2a (1) + 15 () W2a (1), (9)

where ¢,,, ¢,, are the wave functions of

ions A%*(1s) and A%P*(1s) in ground
states, respectively.

Ya(fp) =X 2 3 C(R) Y {

7 (0, (i)

For splitting (8), by using the function (9),
we obtain the following expression in terms
of one-electron orbitals:

AE(R) = AE, +AE,,
AE, =2 f [0 () W2 (1) H 12 (1) 4, (7]
(10)

AE, = Zj[wla (M) W2a (T2) Ijl Y1, (1) Yo (1)) AP, O,
(11)

As it is seen from (10), the first contribu-
tion in splitting AE; gives the crossover tran-
sitions: the electron 1 of the outer orbit of

atom A(Za'l)ﬁ,l/la1 passes into the internal orbit
of atom B**i,,, and the electron 2 of the
internal orbit of atomA® "y, passes into the

outer orbit of atomB“» *y, . The second
contribution AE, is determined by "parallel"
transitions of electrons:
wla - wlb'l//Za - l//Zb'

In [12] the wave functiony,, of the outer
electron of atom in the vicinity of another nu-

cleus B»* was constructed by the means of
the Green function method and is of the form:

], I'=2j-1, x=2A,1,, (12)

i =jeveld T C0Q i, (M)
where
Cj (R) = DJ Rgla(za-'-zb_z)//‘la _(Irnla|+1/2)e_/‘laR_£1a Zy/Ma , (13)
Dj = 2R3, (L+ £12) 2 @M1a) % A (Ima 1-1/2)! @/ ) ™ V2L .
, _ . 12
w(- ML "i ~#1aZb/ ) - 1 [(J-+|ml)!j a4
o T+ oM mp-y2) L (= Im])!
Here Z,-1, c is the velocity of light,

y; ={0%-2Z%a%, 0O;=(-)""(j+12),

M, =Cy1-&2 , &, =E./c?, and E,, is the
energy of the bound stat@,, j;,,l;,, M, Of
an electron in the field of nucleus with charge
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a =1/c=1/137 is the fine structure constant,
(2) is the Euler gamma-function. The as-
ymptotic coefficient A, of the relativistic
Coulomb wave function is given by
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Y2
Z,-1
e <1+ela)((; )—Dla]

= A CAy) M 1a
A.La 1a( 1a) 51a(za _1) fla(za _1)
27, T—ylaﬂ r A7+y1a+1

la la

, (15)

where Via = \/Dfa - (Za _1)20,2 , Dla = (—1)jla_|la+1/2(j1a +]/2) .

The radial wave functionsff| (x are expressed as linear combinations of the Wieittbunc-
tionsM ,, (X):

+ e &L Z E.Zy 1
/]1a J Ala J /11a 2

For the wave functiony,, of ground state hydrogen-like idB™* we use the known expression
[11]:

IR N e e a7)
r - /2 @ “b'w ] — - '
2b\l1p b'1b i i+}ZEQ%,l%(an)
+1 1+y
=(2Z Yo t3 2b ,
P = BB o @y 4
The wave functiongy,, and ¢,, are ob- tegral (10) gives only the correlation part of

interelectronic interactioV (see (6), (7)). As
this operator consists of three summands, it is
convenient to divide the matrix element (10)
into three parts as well:

tained from expressions (12) and (17), respec-
tively, by simultaneous replacement of indi-
cesa « b in all quantities.

Sincey,, is orthogonal tay,, andy,, is

orthogonal toy,, , the contribution to the in-

AE, = AE,, +AE, +AE, , (18)

AEjp = 4<w1a<ﬁb)w2a(r2a)\é\m(ﬁb)m(r@a» : (19)

NEm = 41 (Fip) W28 (P20)| —%\m(rﬁb)m@a» , (20)

BEr = Hyralin) Woa(Foa)| =5 (@@ 2Vt 20(i) () - (21)

-1 - p-1 -2
Let us calculate the matrix elements (19)-(21) fp = R~ (1 COSGy, ~ 154 COSG,,) R +
separately, beginning from the first of them. +[r2 (3cos’ 8, —1) +r2 (3cos G, —1) -
For electrons belonging to different atoms — 2ty 1, (2C0S8,, COSBy, —SiNGy, SING,, X

the instantaneous interaction B i
(7 =[R2 + 2R(ty, COSy, — Iy COSyy) + 12 + *xCOS@y, ~ $22))]/2R "'O(.R ). (22)
Note that both spherical angled, and
0,, are measured from theaxis, connecting

+sin@, sind,, cos@y, — d,,))] 2 centers of chargeg, and Z, .

After substituting only the first three terms
of the expansion (22) into the matrix element

2
+15, — 2, (cosf,, cosb,, +

can be expanded in inverse power&of

100



HayxoBuii BicHuk Ykropozacskoro yniBepcutery. Cepist @isuka. Ne 22. — 2008

(19) and evaluating integrals in a spherical
system of coordinates it can be seen that due

to orthogonality of the functiony,, to ¢,
and ¢, to ¢,, and also selection rules for

spherical harmonics the nonzero contribution
to this matrix element gives only one term of
(22) containing the product
Mplq COSE), COSE,, , 1.€.

AE = %(z/fla(rm) i COSBrn |20 (i) X
x<¢/2a(F2a) ‘rZa COSHZa“//]b(FZa» '

At first, consider the first of the two matrix
elements which are included in (23). The in-
tegration over angular variabléy,, ¢,, leads

to
(wla(r?b) ‘rm COSHm‘I/IZb(F]b» =

_ S Z T
3(2/11a)3“2 {C”z( )( bt \/1+y§Z L“J
—ﬁcaz(R)(lggl— 1V lslﬂ (24)

1+ Van
is the integral with the radial

(23)

where I
functions:

n j [ J-rmyZb V2 _Zbrlb f I (2/11ar:lb) dr:lb (25)

By using the table integral [13]
I'(a+|/+3/2)
(s+12773
Fla+v+3/2,-u+v+12;2v +12/(2s+1)),
where F(a,b;c;z) is the hypergeometric

function, we obtain the expression for the ra-
dial integrals:

24,)" AT
m( 1a) (gn])

[et™,,, (t)dt =
0

Zy+ )
xKyj —gzzbjpli(%b—mjja} (26)
a a

2A,
1a b + k 2 + ,
(gm yJ Ala yJ l' Zb + Alaj

k=01 gy =);*+Vptn+l.
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Having selected the explicit dependence on
internuclear distancB by (13) one can write
the final result for the matrix element (24) in
the form

<¥/1a(F1b) |r1b Coselb|l//2b(r]b)> =
= Aab Rela (Za +Zb _1)//‘13 _(Irnla|+1/2)e_/113R_€1azb//11a ,

(27)
where

_ Ay + 1- Vab | -
A, =—= D I, -
P 32M,) P 133715, 143
+ 1-y,
_\/ED3/2(|L§1_ ﬁ l31]:| (28)

The second matrix element is calculated in
the similar way

<w2a(r2a) |r2a C0582a|wilb (rZa)> =

— AbaRflb (Z,+Z, =D/ Ay =(Imy, |+]/2)e_/11bR_glea//]1b

(29)

where the quantityd,, can be obtained from
the formula (28) forA,, by making the si-

multaneous replacement of indicas- b.

Thus, by substituting (27) and (29) into
(23) we arrive at the expression for the matrix
element of instantaneous interelectronic inter-
action:

8
AEjn =¥AabAba X

£ &
/113+A1b(Z +Z, =) = (Imy, [+|my, [+1)
X R71a 7hb X
glazb_glbza

_(/‘1a +/11b ) R- Alb .

xe la

(30)

Let us proceed to the calculation of the
second termAE,, of the sum (18). Here, in

contrast to the matrix elememE,, besides

the term that is proportional t8~3 the terms

~R1 and~ R? exist as well:
AEq, = _4{ZabeOR_1 (z1tz20+z0711)R2
"‘[Z (32 a) + (3Zab ab)zba

4711711 - 4% o X — AVapYhal RS2}
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G0 45 (747, 1)~ (Imy, [HImy, [+2) 11_ Ay
x R o x Zab oo 32 120+
Z, &nZ,

~(Aa +/11b)R_£;a7_T 1-
Xe 1a b (31) y2b 1 \/_Ds/z 5] - S,
_ . 1+ Vb 15 0 132

Xap = <€U1a|axr1b sinéy, C05¢Jb|l/’2b>

= (4 |cryr]JO SiNBy, Singy |z, ), B i_: ZZ Ifg,zJ+4\/_D5/2 i }ZE Il,g,2:|’
Yoo = (@1a] @yt SINGY, COSPy |1 (36)
= _<l/’1a|axr1b sinéy, 5in¢m|w2b>’ ng =105(2#{_ 7DJ/2[5| 211
e N = WP
= (|0, 150 SINB,, SING, |0, 1+, “2 2
Yoo = (24|00, 150 SING,, COSP,. |141,) + ZJ%I ;31}_2\@[)5/2(7| ,;%S
=~ |0, 122 SING,, SING, | 1

ZQEI =(Ynalazry cos” Gip|wan), 1+,

Znn ~Waalazrly cos” Gaa|¢1p),n 1= 012 (32)

where the quantitied nj) are given by the
After integration over the angular variables ~Previous formula(:n’(26), and the matrix ele-
8y, 6,., Py, b, in the matrix elements ~ Ments X, Y, Z,; are obtained from (33)-

(32), belonging to the formula (31), we obtain  (37) by .making the simultaneous replace-
the following expressions: ments of indexes a «~ b.
For calculation of the matrix elemefE,

iAo, of retardation interactio¥, (see (7)) besides
Xab "15(2 /]1a)3/2 {SDV ( 307" the expansion (22) it is also necessary to use
D the expansion ofr;’ in inverse powers of
+ /1_ Vb |1+10j+ 32 (5|l‘32 large internuclear distande Without going
1+y, ™2 V2 2 into details we give the final result fdE, :
1- . 1- N -
2y r, ooy3D,, |V AE, = 4{(XapZ50 + 280X R 72 +[230(222
1+ Yy, t2? 1+, M2?
(33) ~220)+(z22-220700 - ax 4731

V. = A, o - - 1—y2bI+ —4z;;xba+8xabxba
TBA)Y| 0 VL, 120 _

- 48,220 - 42005, 1R 3 2}

D _
a1 S ol £ YN | Sin 57, 42, ) ~(mya iy 4D
J2 | 22 |1+ Vo 22 x R%Ma 7w X

£1azb _glbza

~(A +Ap)R- 1
H _ _ 1a 1b 38)
ZnO:_ |A2b 3| L l y2b|+1] xe ’ (
ab S(MM)WZ{DHZ[ R PRSP
—2\/§DM 1=V |l+32] nOZ, (35) where the quantitieX ., Yarpar Zanpa are
T4y 2 determined in (33)-(37),
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O, =

= <¢/1a |axr]i sin Gy cosbyy COS¢Jb|‘//2b>
-
105(241,) 2

{14D]/ 1+V2b 11
7 1- y
Dy,| 31, + 2|
\/E 3/2(3 2%1 1+y2b 221]

1- y
++/3D,,| 71 = 72b )+
5/2( 233 1+, 2% J

~Vob, +
—12D7/2/ y2b|2 31.

and J,, one can obtain from (39) by making
the simultaneous replacement of indices
aob.

In the nonrelativistic limit the quantities
Y — 1, &, — 1, and, therefore, all the ma-

~Vob

(39)

trix elementsX .y Yarsar Zahpar Ouwpa t€Nd

to zero. Thus, whert - o the contribution
AE,.,, AE, to the exchange splitting of Breit

interactions disappear, and the exchange ma-
trix element AE,;, corresponding to crossbar

transitions, in the resonant cagg =7, =Z
proceeds into the result of paper [6]:

10 n
n\/f (£j2 Z
nZ+1 ne
N nz-1)"" R2N(2Z-)-5g-2R/n

nZ +1 ’

AE, =2° AT (1- nZ)(

(40)

wheren=1/1, A is the ionization potential,

andA is the nonrelativistic asymptotic coeffi-
cient.
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AJTABATHYHA ACUMIITOTHYHA TEOPIS
ABOEJIEKTPOHHOI ITIEPE3APAIKHA ITPU
PEJATUBICTCBKUX EHEPI'TAX 3B A3KY

B.10. Jla3zyp, O.K. Peiitiii, C.I. Muraauna

VYKropoJchKuii HalllOHAJTBLHUN YHIBEPCUTET, ByJ. Bonommuna, 54, Ysxropoa, 88000,Ykpaina

[MoGymoBaHo aCHMMITOTHYHY (32 BEJIMKAMH MK SOEPHHMH BiJICTaHIMH) TEOPIO
JIBOCJICKTPOHHOI TMepe3apsIKi MpH 3ITKHEHHI 6araTo eJIeKTPOHHOTo aroma 3 Oara-
TO3apsAHAM i0HOM. B pamkax kBazipensTuBicTChkoro HabOmmkeHHs Jlipaka-bpeiita
PO3PaxOBaHO MATPUYHHMA EJIEMEHT JBOCIEKTPOHHOI OOMiHHOi B3aemoii. Jlanuit
ITiIX1JT JO3BOJISIE BPaxXyBaTH PENATHUBICTCHKI €EKTH OB’ A3aHi 3 MarHiTHOIO Ta 3a-
MMI3HIOIOYOI0 MIDKEIEKTPOHHUMHU B3aEMOMISIMH. B HepelsITHBICTCBKIHA TpaHUIl
OTpUMaHU MATPUYHKI €JIEMEHT IEPEXOAUTH B pe3yabTaT pobotu [6].
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