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An asymptotic (over a large internuclear distance) theory of two-electron exchange 
in collision of a multielectron atom and multiply charged ion is constructed. In the 
framework of the quasirelativistic Dirac-Breit approximation the matrix element of 
two-electron exchange interaction is analytically calculated. This approach allows to 
take into account the relativistic effects connected with the magnetic and retardation 
interelectron interactions. In the nonrelativistic limit the matrix element obtained 
proceeds to the result of paper [6]. 
 

 

Introduction 
 

Processes of heavy particle collisions with 
forming of vacancies in inner shells of atoms 
form the basis of many widely applicable 
practical methods of quantitative and qualita-
tive analysis of matters, such as a Auger-
spectroscopy, photo- and x-ray electron spec-
troscopy, electron and proton x-ray spectros-
copy etc. The set of these processes is one of 
the main information sources about the struc-
ture and properties of inner shells of atoms. 
Therefore, detailed experimental and theoreti-
cal study of various collision processes of 
forming and decay of vacancies in inner shells 
of atoms is of the great applied and funda-
mental importance. 

The collisions of the multiply charged ions 
+bZB ( 1>>bZ ) with neutral atoms A with 

large performance can lead to forming of two 
and more vacancies in inner shells of A. Un-
der favourable conditions the mechanisms of 
nonadiabatic bound cause multielectronic 
transitions with effective cross-sections 

21816 1010 cm−− − . In symmetrical systems 
++ ZAA  with a completely stripped ("bare") 

ion +ZA  forming of two vacancies in the K-
shell can occur at the expense of processes of 
two-electronic recharge  

)1( 2)2( sAAAA ZZ +−+++ +→+        (1) 

at distances that are larger than sizes of a 

united atom. Also, other more complicated 
mechanisms of forming of two vacancies in 
K-shell and higher shells are possible. If the 
two-electron vacancies are forming due to 
nonadiabatic two-electron transitions, the cor-
relation effects play an essential role and the 
consideration of the problem is hardly possi-
ble in the framework of approximation of 
one-electron molecular orbitals. Furthermore, 
if the collision energy is not too large, the 
connection of processes with inner-shell elec-
trons and of similar processes where the tran-
sitions execute by outer electrons is observed. 
Unfortunately, all these phenomena are little 
studied, and for processes including highly 
charged ions and bare nuclei are not investi-
gated at all. This situation is a surprising ex-
ample of inertia in a theoretical field in the 
face of deficiency of experimental data that is 
not of the principal character and very likely 
connected with the difficulties in construction 
of sources of multiply charged ions and for-
mation of beams of rather slow particles. In 
last decade in this range of studies the tar-
geted work is carried out (see, for example, 
[1, 2]), and the creation of the theory of mul-
tielectronic processes in ion-atomic and ion-
ionic collisions is one of the most important 
problems. 

In this paper the process of exchange of 
two electrons at collision of the multielec-
tronic atom A with the multiply charged ion 

+bZB  we shall study on the elementary exam-
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ple of collision of He-like ion ),( 21
)2( eeA aZ +−  

with the stripped nucleus; for the helium atom 
and α-particle 2== ba ZZ : 

→+ ++− ba ZZ BeeA ),( 21
)2(  

),( 21
)2( eeBA ba ZZ +−+ +→ .          (2) 

Nevertheless, developed below theoretical 
ideas about physical features of two-electron 
exchange are of the general character. The 
formal construction of the theory will be 
given in the form, suitable for the description 
of collisions of arbitrary atomic particles. 

Since the binding energy of inner-shell 
electrons rapidly increases with increasing 
nuclear charge iZ  ( bai ,= ), at tight colli-

sions of heavy nuclei with own atoms the in-
ner-shell electrons fall in the two-centre po-
tential 

2

2

1

2

)(
r

eZ

r

eZ
rV ba

ab −−=r
,  22,1 Rrr

rr ±= , 

of the united system ++ + ba ZZ BA  with form-
ing of a heavy quasimolecule. 

The traditional description of processes 
with rearrangement of electrons at slow ion-
atomic collisions is based on the introduction 
of the matrix element of the two-electron ex-
change interaction. 

 
General structure of the matrix element 

of two-electron exchange interaction in the 
Dirac-Breit approximation 

 
The process of the electron capture at colli-

sion of He-like ion +− )2( aZA  and bare nucleus 
+bZB  can be realized either as a result of two 

successive one-electron transitions in one col-
lision event including of intermediate state 

+−+− + )1()1( ba ZZ BA : 

→+→+ +−+−++− )1()1()2( baba ZZZZ BABA  

),( 21
)2( eeBA ba ZZ +−+ +→ ,            (3) 

or as a result of the straight two-electron tran-
sition in points of quasi-crossing of adiabatic 
potential curves of original and final states of 
reaction (2) in one collision. 

The first mechanism (3) is simpler and 
studied much more than the simultaneous 
transition of two-electrons from one nucleus 
to the other one (reaction (2)). The studies of 

resonant two-electron capture (in collision of 
atom A and two-charged ion ++A  of the same 
chemical element), carried out in [3, 4], have 
shown that the process of exchange of two 
electrons in a direct way (2) comprises a 
number of interesting features that are not in-
herent in the mechanism of serial drift of elec-
trons from atom A to ion ++A . In this sense 
the nonresonance exchange of two electrons 
(in collision of different atom and ion) is not 
an exception (see [5, 7] and review [8]). 

In adiabatic range of collision velocities 
the capability of a qualitative analysis of the 
transitions dynamics in reaction (2) yields the 
approach based on separation of the so-called 
ranges of non-adiabaticity [9]. Adiabatic evo-
lution of the electronic subsystem on quasi-
molecular potential curves leads to the fact 
that the probabilities of transitions between 
levels separated by considerable energy inter-
val are exponentially small. The nonadiabatic 
transitions are localized in small vicinity of 
crossing point cR  of diabatic quasimolecular 

potential curves of original and final states of 
process (2). In each of such vicinities the 
adiabatic potential curves form the quasi-
crossing, and spacing interval between poten-
tial curves )(RE∆  at cR  is equal to the matrix 

element of the exchange interaction )(R∆  of 

two-electron diabatic states ++− + ba ZZ BA )2(  
and +−+ + )2( ba ZZ BA . 

The large values of total cross-sections of 
two-electron capture allow to assume that the 
process (2) is determined by transitions at 
large enough internuclear distances R. It en-
ables to carry out the analytical investigation 
in asymptotic approximation, as was done in 
all of the above mentioned articles [3]-[8]. 

For asymptotic interatomic distances the 
main purpose of analytical investigation of 
process (2) is the determination of the matrix 
element of the two-electron exchange interac-
tion )(RE∆ . In the general nonresonance case 

( ba ZZ ≠ ) the value )(RE∆  is determined as 

the doubled matrix element 

2)(ˆ)( REHRH baab ∆=ΨΨ=  of the elec-

tron Hamiltonian Ĥ  between the electron 
wave functions aΨ , bΨ  of original 

++− + ba ZZ BA )2(  and final +−+ + )2( ba ZZ BA  dia-
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batic states of quasimolecule. 
At the same time, in all of the papers 

quoted above [3]-[7] when determining the 
parameters of particle interaction in two-
electron exchange it was supposed that the 
electrons and nuclei interact instantaneously. 
The retardation connected with the finiteness 
of the velocity of light c was not taken into 
account. However on large internuclear sepa-
rations R, at which the propagation time of 
interaction cR  becomes of the same order 
with a mean time of electron transitions, be-
sides the "instantaneous" Coulomb interaction 

12
2 re  it is necessary to take into account the 

effects of retardation leading to arise of the 
additional terms in the operator of interelec-
tron interaction. If in reactions (1), (2) the nu-
clear charges of both colliding particles are 

large, so that 1≤mZ  (where ce h
2=α  is the 

fine structure constant, mZ  is the greater of 

nuclear charges aZ , bZ ), and the electron 

capture takes place from internal (not optical) 
shells, alongside of retardation effects it is 
necessary to take into account the essential 
deviations of the angular and spin moments 
from LS -coupling scheme, and also relativis-
tic character of motion of rapid inner-shell 
electrons in heavy quasi-molecule 

2)( −+ ba ZZAB . 
There are some ways of taking into ac-

count the relativistic effects in a problem of 
calculation of the matrix element )(RE∆ . In a 

case of not too heavy He-like ions +− )2( aZA  
and bare nuclei +bZB  in the nonrelativistic 
Hamiltonian of the two-centre system 

++− + ba ZZ BA )2(  it is possible to introduce the 
additional members from the Breit-Pauli 
Hamiltonian [11]. When they are small 
enough, they can be taken into account in the 
perturbation theory. 

The alternate approach apparently reason-

able for heavy quasi-molecules 2)( −+ ba ZZAB  

with the total charge of nuclei 137≥+ ba ZZ  

consists in constructing the asymptotic (on 
large internuclear distances) theory of process 
of two-electron exchange (2) on the basis of 
the Dirac-Breit equation [11]. Such approach 
allows to take into account the orbital and 
spin degrees of freedom of active electrons, 

most natural for heavy atoms jj -coupling 
scheme of the angular and spin moments, and 
also effects of retardation of interelectronic 
interaction at large R. 

For stationary states the quasirelativistic 
wave Dirac-Breit equation describing motion 
of two interacting one another electrons in the 
field of two fixed Coulomb centres with 
charges aZ  and bZ  is of the form 

( 1=== emeh ): 

Ψ=Ψ++=Ψ EVHHH )ˆˆ(ˆ
21 , 

ib

b

ia

a
iiiii r

Z

r

Z
cpcrH −−+= βα 2ˆˆ)(ˆ rr

.   (4) 

Here );,( 21 Rrr
rrΨ=Ψ  is the 16-component 

wave function, E is the total energy of two 
electrons, including their rest energy; the in-
dexes a, b number the nuclei +aZA , +bZB  
with charges aZ  and bZ , respectively; the 

index 2,1=i  distinguishes quantities, relating 

to the first and second electrons; R
r

 is the vec-
tor between nuclei; ir

r
 is the vector joining the 

centre of segment R with the i-th electron; iar  

and ibr  are the distances from the i-th electron 

to nuclei +aZA  and +bZB , respectively; 
{ }11,βαr  and { }22,βαr  are two commuting sets 
of the Dirac matrices of the first and second 

particles; iĤ  is the Dirac Hamiltonian of the 

two-centre problem baeZZ , describing mo-

tion of the i-th electron in the field of two 
fixed nuclei with charges aZ  and bZ  sepa-

rated by distance R. The symbol ),( 21 rrVV
rr=  

in (4) indicates the potential of the interelec-
tron interaction: 

BV
r

V +=
12

1
, 









+−=

2
12

122121
21

12

))((

2

1

r

rr

r
VB

rrrr
rr αααα .   (5) 

The first term 1
12
−r  describes the instanta-

neous Coulomb interaction of electrons, and 
the Breit operator BV  is sometimes repre-

sented in the form of the sum of magnetic mV  

and retardation rV  interactions: 
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rmB VVV += ,                      (6) 

1221 )( rVm αα rr
−= , 

=∇∇−= 122211 ))((
2
1

rVr
rrrrr αα  









−−= 2

12

122121
21

12

))((
2
1

r

rr

r

rrrr
rr αααα .    (7) 

where 12r  is the distance between electrons. 
 

Calculation of the matrix element of 
two-electron exchange interaction 

 
As it was already mentioned in the previ-

ous section, the matrix element of the two-
electron exchange interaction is given by 

ba HRE ΨΨ=∆
^

2)( .              (8) 

As well as in a nonrelativistic case [4] it is 
possible to represent the two-electron atomic 
wave functions ),( 21, rrba

rrΨ  in the form of lin-

ear combination of products of one-electron 
functions (orbitals) )(r

rψ : 

)( )()( )( 12212211 rrrr aaaaa
rrrr ψψψψ +=Ψ , (9) 

where a1ψ , a2ψ  are the wave functions of 

ions )1( sA aZ +  and )1()1( sA aZ +−  in ground 
states, respectively. 

For splitting (8), by using the function (9), 
we obtain the following expression in terms 
of one-electron orbitals: 

 

21)( EERE ∆+∆=∆ , 

; )]( )()( )([2 212112

^

22111 rdrdrrHrrE bbaa

rrrrrr

∫=∆ ψψψψ  

(10) 

. )]( )()( )([2 212211

^

22112 rdrdrrHrrE bbaaba

rrrrrr

∫=∆ ψψψψ  

(11) 

 
As it is seen from (10), the first contribu-

tion in splitting 1E∆  gives the crossover tran-
sitions: the electron 1 of the outer orbit of 

atom a
Z aA 1

)1( ψ+−  passes into the internal orbit 

of atom b
ZbB 2ψ+ , and the electron 2 of the 

internal orbit of atom a
Z aA 2ψ+  passes into the 

outer orbit of atom b
ZbB 1

)1( ψ+− . The second 

contribution 2E∆  is determined by "parallel" 
transitions of electrons: 

ba 11 ψψ → , ba 22 ψψ → . 

In [12] the wave function a1ψ  of the outer 

electron of atom in the vicinity of another nu-
cleus +bZB  was constructed by the means of 
the Green function method and is of the form: 

∑∑
±= ′

−

+

=

−














Ω
Ω

=
21 1||,

1||,

||

23
11 )()( 

)()(
)()(

1

1

1 jl bmljlj

bmjllj

mj
jba nxfi

nxf
RCxr

a

a

a

r

r
rψ ,  ljl −=′ 2 ,  barx 112λ= ,     (12) 

where 
abaaaabaa ZRmZZ

jj eRDRC 111111 )21|(|)2()( λελλε −−+−−+= ,                           (13) 

aa

aaba
mj

m
aa

Z
aaaj LmAD

11

111 21||
111

21
11 )2()!21|(|)2()1(2 −− −+= λλε λε  

)12(

)(
)1(

111||
1

1

+Γ

−Γ
−× −+

j

abaj
jm

mj Z
L

a

a

γ
λεγ

, 
21

|| |)!|(

|)!|(

)!21|(|2

1









−
+

−
=

mj

mj

m
L

mjm .        (14) 

 
Here  

222 αγ bjj Z−ℵ= , )21()1( 21 +−=ℵ +− jlj
j , 

2
11 1 aa c ελ −= , 2

11 cE aa =ε , and aE1  is the 

energy of the bound state ),,,( 1111 aaaa mljn  of 

an electron in the field of nucleus with charge 

1−aZ , c is the velocity of light, 

13711 ≈= cα  is the fine structure constant, 
)(zΓ  is the Euler gamma-function. The as-

ymptotic coefficient aA1  of the relativistic 

Coulomb wave function is given by 
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21

1
1

1
1

1

1

1
1

1)1(

111

1
)1(

1
)1(

2

)1(
)1(

)2( 1

1





























++−Γ








+−−Γ









ℵ−−+

=
−

a
a

aa
a

a

aa
a

a
a

a
aZ

aaa
ZZ

Z

Z

A a

aa

γ
λ

εγ
λ

ε
λ

ε
λλ λ

ε

,       (15) 

where 222
11 )1( αγ −−ℵ= aaa Z , )21()1( 1

21
1

11 +−=ℵ +−
a

lj
a jaa . 

The radial wave functions )(, xf lj
±  are expressed as linear combinations of the Whittaker func-

tions )(, xM νµ : 

















ℵ−±








−±=

+−

± )()(1)( ,
1

,
1

1
1, xM

Z
xM

Z
xf

jj j
a

b

a

ba
jalj γµγµ λλ

εγε , 
2
1

1

1 ±=±
a

baZ

λ
εµ .     (16) 

For the wave function b2ψ  of ground state hydrogen-like ion +bZB  we use the known expression 

[11]: 















Ω−

Ω
=

+
−

−−

)(

)(
)(

1,1,1
1

1,0,
1

1212

2
1

2
1

2

2

2
1

2
1

12

b

b
rZ

bbbb ni

n
erAr

b

b

bbb
r

r

r

γ
γ

γψ ,                               (17) 

)12(2
1

)2(
2

2
2

2
1

2

+Γ
+= +

b

b
bb

bZA
γ
γγ ,     22

2 1 αγ bb Z−= . 

The wave functions b1ψ  and a2ψ  are ob-

tained from expressions (12) and (17), respec-
tively, by simultaneous replacement of indi-
ces ba ↔  in all quantities. 

Since a1ψ  is orthogonal to b2ψ  and b1ψ  is 

orthogonal to a2ψ , the contribution to the in-

tegral (10) gives only the correlation part of 
interelectronic interaction V (see (6), (7)). As 
this operator consists of three summands, it is 
convenient to divide the matrix element (10) 
into three parts as well: 

rmin EEEE ∆+∆+∆=∆ 1 ,                                                  (18) 

)( )(
1

)( )(4 2112
12

2211 abbbaabain rr
r

rrE
rrrr ψψψψ=∆ ,                                   (19) 

)( )()( )(4 2112
12

21
2211 abbbaabam rr

r
rrE

rr
rr

rr ψψααψψ −=∆ ,                                (20) 

)( )())((
2

1
)( )(4 21121222112211 abbbaabar rrrrrE

rrrrrrrr ψψααψψ ∇∇−=∆ .                         (21) 

 
Let us calculate the matrix elements (19)-(21) 
separately, beginning from the first of them. 

For electrons belonging to different atoms 
the instantaneous interaction 

++−+=− 2
12211

21
12 )coscos(2[ baabb rrrRRr θθ  

+−+ ababa rrr 2121
2
2 cos(cos2 θθ  

21
2121 ))]cos(sinsin −−+ abab ϕϕθθ  

can be expanded in inverse powers of R: 

+−−= −−− 2
2211

11
12 )coscos( RrrRr aabb θθ

−−+−+ )1cos3()1cos3([ 2
22

21
22

1 aabb rr θθ
×−− abababrr 212121 sinsincoscos2(2 θθθθ  

)(2))]cos( 43
21

−− +−× RORab ϕϕ .   (22)  

Note that both spherical angles b1θ  and 

a2θ  are measured from the z-axis, connecting 

centers of charges aZ  and bZ .  

After substituting only the first three terms 
of the expansion (22) into the matrix element 
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(19) and evaluating integrals in a spherical 
system of coordinates it can be seen that due 
to orthogonality of the function a1ψ  to b2ψ  

and b1ψ  to a2ψ  and also selection rules for 

spherical harmonics the nonzero contribution 
to this matrix element gives only one term of 
(22) containing the product 

ababrr 2121 coscos θθ , i.e. 

×=∆ )(cos )(
8

1211113 bbbbbain rrr
R

E
rr ψθψ  

)(cos )( 212222 abaaaa rrr
rr ψθψ× .     (23) 

At first, consider the first of the two matrix 
elements which are included in (23). The in-
tegration over angular variables b1θ , b1ϕ  leads 

to 

=)(cos )( 121111 bbbbba rrr
rr ψθψ  

−

















+
−−− −+

1,,1
2

2
1,,12123

1

2
2
1

2
1

1
1

)(
)2(3

IIRC
A

b

b

a

b

γ
γ

λ
 


















+
−−− −+

1,,1
2

2
1,,123

2
3

2
3

1
1

)(2 IIRC
b

b

γ
γ

,       (24) 

where ±
ljnI ,,  is the integral with the radial 

functions: 

bbalj
rZn

bljn drrferI bbb
1

0
11,

21
1,,  )2(12∫

∞
±−−+± = λγ .(25) 

By using the table integral [13] 

×
+

++Γ= ++

∞
−

∫ 23
0

,
)21(

)23(
 )( νανµ

α να
s

dttMte st  

),)12(2;12;21,23( ++++−++ sF ννµνα  

where );;,( zcbaF  is the hypergeometric 
function, we obtain the expression for the ra-
dial integrals: 

×
+

Γ
±=

+
±

nj

j

g
ab

nja
aljn

Z

g
I

)(

)()2(
1

1

21
1

1,, λ
λ

ε
γ

 

















ℵ−±








−× 0

1
1

1

1 F
Z

F
Z

j
a

b

a

ba
j λλ

εγ , (26) 

,
2

;12;,
1

1

1

1









+
++−=

ab

a
j

a

ba
jnjk Z

k
Z

gFF
λ

λγ
λ

εγ

,1,0=k   12 +++= ng bjnj γγ . 

Having selected the explicit dependence on 
internuclear distance R by (13) one can write 
the final result for the matrix element (24) in 
the form 

=)(cos )( 121111 bbbbba rrr
rr ψθψ  

abaaaabaa ZRmZZ
ab eR 111111 )21|(|)1( λελλε −−+−−+∆= ,  

(27) 
where 


















+
−−−=∆ −+

1,,1
2

2
1,,12123

1

2
2
1

2
1

1
1

)2(3
IID

A

b

b

a

b
ab γ

γ
λ


















+
−−− −+

1,,1
2

2
1,,123

2
3

2
3

1
1

2 IID
b

b

γ
γ

.     (28) 

The second matrix element is calculated in 
the similar way 

=)(cos )( 212222 abaaaa rrr
rr ψθψ  

babbbbbab ZRmZZ
ba eR 111111 )21|(|)1( λελλε −−+−−+∆= ,  

(29) 
 

where the quantity ba∆  can be obtained from 

the formula (28) for ab∆  by making the si-

multaneous replacement of indices ba ↔ . 
Thus, by substituting (27) and (29) into 

(23) we arrive at the expression for the matrix 
element of instantaneous interelectronic inter-
action: 

 

×∆∆=∆ baabin
R

E
3
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++−−++ )1|||(|)1( 11

1

1

1

1
baba
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b
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a mmZZ

R λ
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ε

 

b
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a
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ZZ
R

e 1

1

1

1
11 )(

λ
ε

λ
ελλ −−+−

× .                  (30) 

 

Let us proceed to the calculation of the 
second term mE∆  of the sum (18). Here, in 

contrast to the matrix element inE∆  besides 

the term that is proportional to 3−R  the terms 
1~ −R  and 2~ −R  exist as well: 

21100001110000 )({4 −− +−−=∆ RZZZZRZZE baabbaabbaabm  

        002022202200 )3()3([ baababbabaab ZZZZZZ −+−+  

        }2]444 31111 −−− RYYXXZZ baabbaabbaab  
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++−−++ )1|||(|)1( 11
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b
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a mmZZ

R λ
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b
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a

ba
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ZZ
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e 1

1
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11 )(
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λ
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× ,                   (31) 

bbbbxaab rX 21111 cossin ψϕθαψ=  

               bbbbya r 21111 sinsin ψϕθαψ= , 

bbbbyaab rY 21111 cossin ψϕθαψ=  

              bbbbxa r 21111 sinsin ψϕθαψ−= , 

baaaxaba rX 12222 cossin ψϕθαψ=  

               baaaya r 12222 sinsin ψϕθαψ= , 

baaayaba rY 12222 cossin ψϕθαψ=  

baaaxa r 12222 sinsin ψϕθαψ−= , 

bb
nn

bza
nn
ab rZ 21

'
11

' cos ψθαψ= , 

2,1,0',,cos 12
'

22
' =−= nnrZ ba

nn
aza

nn
ba ψθαψ . (32) 

 

After integration over the angular variables 

b1θ , a2θ , b1ϕ , a2ϕ  in the matrix elements 

(32), belonging to the formula (31), we obtain 
the following expressions: 
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(33) 
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(37) 
 

where the quantities ± ljnI ,,  are given by the 

previous formulae (26), and the matrix ele-
ments baX , baY , nn

baZ ′  are obtained from (33)–

(37) by making the simultaneous replace-
ments of indexes ba ↔ . 

For calculation of the matrix element rE∆  

of retardation interaction rV  (see (7)) besides 
the expansion (22) it is also necessary to use 
the expansion of 3

12
−r  in inverse powers of 

large internuclear distance R. Without going 
into details we give the final result for rE∆ : 

220020000 ([){(4 baabbaabbaabr ZZRXZZXE ++−=∆ −  
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× ,               (38) 

 

where the quantities baabX , , baabY , , nn
baabZ ′
,  are 

determined in (33)-(37), 
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and abδ  one can obtain from (39) by making 

the simultaneous replacement of indices 
ba ↔ . 

In the nonrelativistic limit the quantities 
12 →bγ , 11 →aε , and, therefore, all the ma-

trix elements baabX , , baabY , , nn
baabZ ′
, , baab ,δ  tend 

to zero. Thus, when ∞→c  the contribution 

mE∆ , rE∆  to the exchange splitting of Breit 

interactions disappear, and the exchange ma-
trix element 1E∆ , corresponding to crossbar 

transitions, in the resonant case ZZZ ba ==  

proceeds into the result of paper [6]: 
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where λ1=n , λ  is the ionization potential, 
and A is the nonrelativistic asymptotic coeffi-
cient. 
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АДІАБАТИЧНА АСИМПТОТИЧНА ТЕОРІЯ 
ДВОЕЛЕКТРОННОЇ ПЕРЕЗАРЯДКИ ПРИ 
РЕЛЯТИВІСТСЬКИХ ЕНЕРГІЯХ ЗВ’ЯЗКУ 

 

В.Ю. Лазур, О.К. Рейтій, С.І. Мигалина 
 

Ужгородський національний університет, вул. Волошина, 54, Ужгород, 88000, Україна  
 

Побудовано асимптотичну (за великими між’ядерними відстанями) теорію 
двоелектронної перезарядки при зіткненні багато електронного атома з бага-
тозарядним іоном. В рамках квазірелятивістського наближення Дірака-Брейта 
розраховано матричний елемент двоелектронної обмінної взаємодії. Даний 
підхід дозволяє врахувати релятивістські ефекти пов’язані з магнітною та за-
пізнюючою міжелектронними взаємодіями. В нерелятивістській границі 
отриманий матричний елемент переходить в результат роботи [6]. 

 


