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The relativistic potential quark model of heavy-light mesons describing the motion 
of a light antiquark by the Dirac equation with a scalar-vector coupling is con-
structed. In the quasiclassical approximation we have obtained the simple asymp-
totic formulae for energy and mass spectra of D-, DS-, B- and BS-mesons ensuring an 
appropriate accuracy of calculations even for states with the radial quantum number 
nr ~ 1. Our results fully agree with experimental data. 

 

Introduction 

As numerous experiments demonstrate 
most of the known particles have an inner 
structure, i.e. they are composite objects. First 
of all it concerns hadrons (both mesons and 
baryons), which according to modern vision 
are the bound states of colour quarks and glu-
ons. 

The description of mass spectra and decay 
probabilities of composite objects precludes 
the construction of the consistent theory of 
bound states. Such theory should be founded 
on basic principles of the local quantum field 
theory (LQFT) and should use its formalism 
[1]. However direct calculations of the speci-
fied characteristics of composite systems in 
the framework of LQFT are hardly always 
possible, because in LQFT the only known 
way of calculation is based on the perturba-
tion theory, while the nature of creation of 
bound states of interacting particles, uncondi-
tionally, should be determined by nonpertur-
bative effects.  

The most effective way to go beyond the 
framework of the perturbation theory when 
constructing the theory of bound states is us-
age of dynamic equations. Even if it is possi-
ble to construct cores (potentials) of dynamic 
equations only in the lowest orders of the per-
turbation theory, the elaboration of methods 
of their precise or approximative solving (but 
without the perturbation theory) allows to 
take into account the contribution of nonper-
turbative interaction effects at calculations of 
observed characteristics of bound states. In 
the nonrelativistic case the similar theory is 
constructed with the help of the dynamic 

Schrödinger equations on the language of 
classic potential. However at large bound en-
ergies the suitable theory should be essen-
tially relativistic. In this regard about a half 
century ago the way of solving the given 
problem, based on using of the dynamic equa-
tions in the local quantum field theory, was 
scheduled. Examples of such equations are 
the Bethe-Salpeter equation [2], the quasipo-
tential equation [3] and other ones [4]. 

The effective Dirac equation method plays 
an important role in the modern relativistic 
theory of bound states. This method allows to 
pass consistently from the two-particle theory 
to the external field approximation [5]. As it 
follows from the results in [5, 6], this possi-
bility is realized and has practical advantages 
in the case of hydrogen-like atoms and qQ  
systems. However, in the majority of prob-
lems, where the external field concept [6] is 
physically justified, attempts to find exact so-
lutions of the Dirac equation with more or 
less realistic interaction potentials still en-
counter insurmountable difficulties. Either 
numerical or asymptotic methods are most 
often used to calculate the solutions. In many 
theoretical and applied problems precisely the 
possibility of obtaining an asymptotic solution 
permits analyzing the problem most com-
pletely. Therefore, it hardly needs saying how 
important it is to create and develop asymp-
totic methods for solving the Dirac equation.  

The construction of quasiclassical solu-
tions of the spinor equation with scalar-vector 
coupling was recently given in [7, 8]. The 
scheme of quasiclassical quantization, offered 
in [8], allows to clear up connection of quasi-
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classical asymptotics in spectral problems for 
the Dirac equation in external scalar and vec-
tor fields with Lorentz structure of the interac-
tion potentials corresponding to them.  

In this paper, within the WKB method, the 
behaviour of a spin-1/2 relativistic particle is 
studied in the presence of scalar-vector exter-
nal fields with potentials of a confining type. 
More definitively, when creating the relativis-
tic version of potential model which is taking 
into account the Lorentz structure of inter-
quark interaction potentials, we used the Cor-
nell model offered in [9] in which the effec-
tive colour Coulomb attraction on small dis-
tances r  and string interaction at large r  are 
taken into account. 

Quasiclassical description of energy 
spectrum of heavy-light quark-antiquark 

systems 

The problem of the motion description of a 
relativistic particle of a spin-1/2 in a central 
field composed of scalar and vector external 
fields is reduced via the separation of vari-
ables to solving the system of radial Dirac 
equations ( 1=c ) 
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where ( ) ( )rrfrF = , ( ) ( )rrgrG = , ( )rf  and 

( )rg  are radial functions for upper and lower 
components of the Dirac bispinor [10], E  and 
m  are the total energy and the rest mass of a 
particle, ( )rS  is the scalar Lorentz potential, 

and the potential ( )rV  is the zero (time) com-

ponent of the four-vector ( )A,0AA =µ : 
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j is the total angular momentum, l is the or-
bital angular momentum. 

The theory of a quasiclassical approxima-
tion of the Dirac equation as 0→h  with a 
scalar-vector coupling began systematically to 

be elaborated in [8]. The formal asymptotic 
expansions in powers of h  in the initial Dirac 
system (1) for radial functions ( )rF  and 

( )rG  lead to the hierarchy of matrix equa-
tions, which are solved consistently by known 
technique of the left and right eigenvectors of 
a homogeneous system. The wave functions 
for the barrier-type effective potential (EP) in 
classically allowed and forbidden regions 
were constructed 
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Fig. 1. Form of the barrier-type effective potential 

( )ErU , ; ( ) mmEE 222 −=  is the effective 

energy; 0r , 1r  and 2r  are roots of equation 

( ) 02 =rp . 

 
Also neglecting the barrier penetrability in 

the region 21 rrr <<  (see fig. 1), we have ob-
tained the quantization condition 
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21222 ])()()[()( rkSmVErp −+−−= , is 
the quasiclassical momentum for the radial 
motion of a particle, K,2 ,1 ,0=rn  is the ra-
dial quantum number. 

To apply a potential approach for the de-
scription of the property of heavy-light mes-
ons it is important to construct an interaction 
potential between quark and antiquark. As is 
known in QCD [7, 11], the asymptotic free-
dom at small distances implies that the main 
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contribution to the qQ  interaction is given by 
the usual Coulomb potential of the one-gluon 
exchange, ( ) rrV s 34α−= , where sα  is the 

strong coupling constant. As the distance in-
creases, the main contribution is given by the 
scalar confining interaction (confinement) 
whose "exact" form has not yet been found 
within QCD. The confining potential can be 
of complicated Lorentz structure. The lattice 
calculations [12] based on the first QCD prin-
ciples distinguish the linear confinement as 
the most argued one. Thus, for the long-range 
part ( )rv  of interquark interaction we take the 

linear potential ( ) 0 Vrrv += σ  reproducing 

results of lattice QCD-calculations fairly well 
[13]. Hence we assume that qQ  interaction 
consists of: the one-gluon exchange potential 

( ) rrVCoul ξ−=  ( sαξ 34= ); the long-range 

linear scalar confining potential 

( ) ( ) ( )rvrS rl  1.. λ−= ; the long-range linear 

vector potential ( ) ( )rvrV rl  .. λ= . 

In this case the vector and scalar parts of 
interquark interaction potential equal 

( ) ( ) ( )rVrVrV rlCoul .+=  

( ),  0Vrr ++−= σλξ          (4) 

( ) ( ) ( ) ( ),  1 0. VrrSrS rl +−== σλ   (5) 

where ξ  is the electrostatic coupling constant, 
λ is the coefficient of mixing of the scalar 

( )rS rl ..  and vector ( )rV rl ..  long-range poten-

tials ( 10 ≤≤ λ ), σ  is the string tension, 0V  is 

the real constant. 
In our model (4), (5) the asymptotic behav-

iour of the EP ( )ErU ,  is of the form
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It can be seen that regardless of the sign of 

the parameter σ  EP ( )ErU ,  of the consid-
ered model (4), (5) is (at rather large dis-
tances) an attractive potential for 21>λ  and 

repulsing for 21<λ . Thus at 21<λ  EP 

( )ErU ,  of model (4), (5) is an unboundedly 
increasing (with increase r ) confining poten-
tial in which there is only discrete spectrum of 
energy levels. The provisional form of EP 

( )ErU ,  at 21<λ  is shown in fig. 2. 

At 21>λ  EP 21<λ  of model (4), (5) 
looks like the well which is carved out from 
exterior range by wide (at 1<<σ ) potential 

barrier (see fig. 1). Due to the barrier the solu-
tion of the Dirac equation in an external field 
(4), (5) has a divergent wave asymptotics at 
the infinity. This corresponds to a particle be-
ing in a quasistationary state and eventually 
escaping from a decaying system [14].  

The physical distinction between two con-
sidered cases ( 21<λ  and 21>λ ) can be 

explained as follows. The existence of term 
( ) mVS 222 −  in the formula (2) for EP 

( )ErU , , which is characteristic for a relativ-
istic problem, demonstrates that in the  

 

Fig. 2. The effective potential ( )ErU ,  with po-

tentials (4), (5) in the case 210 <≤ λ , 0>σ ; 

a, b, c and d are roots of quasimomentum 

( ) 02 =rp . 
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case of repulsing ( 21<λ ) in a long-range 

part ( )rv  of interaction (4), (5) the relative 

weight ( )λ−1  of a Lorentz scalar ( )rS rl ..  

prevails over the relative weight λ  of Lorentz 
vector ( )rV rl .. , and in the case of attraction 

( 21>λ ) we have the contrary result. It 
means that the effective confining interaction 
( 21<λ ) is predominantly scalar, and vector 

potential ( )rV , which has deconfining action 
regardless of the sign of the parameter σ , 
only corrects EP ( )ErU ,  at large distances. 

At 21=λ  and positive values of σ  we 
obtain the linear confining potential which 
has a discrete spectrum only. However, at 

21=λ  and rather small negative values of 

σ  EP ( )ErU ,  of model (4), (5) has a wide 
barrier. Due to this there is a capability of de-
cay of a level by tunnelling through the poten-

tial barrier, i.e. the bound level transforms in 
the quasistationary exponentially decaying 
state with complex energy 2Γ−= iEE r . 

Thus, for the specification statement qQ  
interaction by potentials (4), (5) we choose 
the range of values 210 <≤ λ  of mixing co-
efficient λ . Since one fails to obtain an exact 
solution of the Dirac system (1) with poten-
tials (4) and (5), we apply the method of a 
quasiclassical approximation which has, in 
the case of scalar and vector fields of the Cou-
lomb-type and oscillator-type, a high accu-
racy even for small quantum numbers [8]. 

After substituting the potentials (4), (5) in 
the quantization rule (3) and integrating we 
arrive at the transcendental equation: 
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where ( )χF , ( )χE , and ( )χν ,Π  are the el-
liptic integrals of 1-st, 2-nd, and 3-rd order, 
respectively. The expressions for ν , χ , ±ν , 

ℜ  and iN  ( )7,,1K=i  are rather cumber-

some and given in the Appendix. The turning 
points abcd <<<  satisfy the equation 
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"Weak coupling" approximation 

Of course, in general, it is impossible to 
obtain "exact" solution of the equation (7), 
however, situation is simplified in the process 
of increase of energy E  or in the approxima-
tion of a "weak" (as contrasted to the Cou-
lomb field) long-range field. The first case 

corresponds to not too large (i.e. "intermedi-
ate") values of parameters ξ  and σ  

( 2GеV 2.0≤σ  and 8.03.0 << ξ ) at which 

the condition σγ>>2~
E  is well satisfied for 

all possible values of level energy knr
E  of 

heavy-light mesons, and the second case is 

realized at 2mξσ << . For our purposes (i.e. 
for physics of heavy-light mesons) only the 
first case is interesting, whereas the second 
one most often meets in approximated calcu-
lations of those properties of lowest hadron 
states, which directly do not depend on exis-
tence or absence of confinement.  

The simple and often effective way of ob-
taining asymptotic expansions of integral (3) 
consists in expanding the quasimomentum 

( )rp  on small argument – perturbation and in 
further termwise integration of the obtained 
series. Thus, depending on value of E

~
 with 

respect to the level mE ~~ =  we shall consider 
some most typical situations.  
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A. Assume that mE ~~ <  and 2mξσ << , 
then expanding the expressions for tuning 

points in small parameter 12 <<mξσ  and 
leaving only two terms in these series we ob-
tain 
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2 λλη −+= . It 
follows from the formulae (8), (9) that at 
small positive values of σ  the turning points 
c  and d  are rather far from the pointsa , b  
and tend to a minus infinity when 0→σ . 
Expand the quasimomentum ( )rp  in the 
range of the potential well arb <<  in pow-
ers of 1|| <<cr  and 1|| <<dr . Then after 
termwise calculation in (3) tabular integrals 

with the precision ))(( 22mO ξσ  we obtain 
the result for the energy of levels: 
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where 10η  and 20η  are obtained accordingly 

from expressions for 1η , 2η  by substitution 

0
~~
EE → .  

B. In practically important region mE ~~ >  
and 0>σ , representing substantial interest 
for physics of heavy-light mesons, the small 

dimensionless parameter 2~
Eσγ  arises in the 

spectral problem. At 1
~2 <<Eσγ  the ap-

proximated expressions for turning points are 
of the form: 
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Find the point r~  dividing the integration 
range arb ≤≤  into the segment rrb ~≤≤ , 
where the Coulomb potential dominates, and 
the segment arr ≤≤~ , where the long-range 
linear potential ( )rv  is dominating. In range 

rrb ~≤≤  we calculate the quantization inte-
gral (3), expanding the quasimomentum ( )rp  
in a series in increasing powers of arguments 

1<<ar  and 1|| <<dr , and at arr ≤≤~  the 

expansion of ( )rp  is carried out in small pa-

rameters 1<<rb  and 1|| <<rc . As a result, 
we obtain the transcendental equation with 
respect to the energy E : 
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Though the equation (11) is much easier 

than the "exact" quasiclassical equation (7) 
for level energy, it is necessary to use numeri-
cal calculations to solve it. Below we consider 
some limit cases, when the equation (11) is 
simplified and can be analytically studied.  

At values of arguments 2GеV 2.0≤σ  
and 8.03.0 << ξ  for all possible values of 

levels energy knr
E  of heavy-light mesons the 

condition mE ~~ >>  is well satisfied. If we ex-

pand the left-hand part of (11) in 1
~~ <<Em  to 

within the terms which are proportional to
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third power, then for the energy knr
E  we arrive at the transcendental equation 
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Solving this equation by the method of series iterations, as a first approximation we obtain the 

required expression for eigenvalues of the energy knr
E  (to within )

~
( 2EO σγ ): 
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where ( ) ( ) ( ))0(2 ~
2121 EA λσξλλζ −−−−= , 
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( )0)0( == ξkrnEE  is the zero approximation. 

Energy and mass spectra of heavy-light 
mesons 

In table 1 the comparison of calculation re-

sults of levels energy WKB
knr

E  and WKB(as)
knr

E  in 

the basis of the transcendental equation (7) 
and the asymptotic formula (13), with precise 
values knr

E  obtained by numerical solving of 

the Dirac equation, are shown for 2,1,0=rn  

and 2,1±±=k . We selected such values sα , 

λ , 0V , dum ,  and sm , which are used in QCD 

at the state description of B( ub or db )-, 
)( sbBs -, D( uc or dc )- and )( scDs -mesons. 

As it can be seen from table 1 the errors 

in calculating the quasiclassical values WKB
knr

E  

and WKB(as)
knr

E  do not exceed 1% and 2%, re-

spectively (with the exception of states energy 
with a radial quantum number 0=rn , where 
the error of both formulae ~8%). Thus, the 
precision of determination of knr

E  by the 

quasiclassical formula (13) is such that for 
practical purposes there is usually no sense to 
update the first approximation. 

In the leading order on Qm1  the mass 

spectrum of meson states with one heavy 
quark is given by the expression [15] 

( ) 222
Qqknkntheor mmEEqQM

rr
+−+= , (14) 

Table 1. 3.0=sα , 2GeV 18.0=σ , 3.0=λ , GeV 45.00 −=V , 
GeV 33.0, =dum , GeV 5.0=sm  and GeV 88.4=bm . 

ub , db  sb  

jN  ),( knr  knr
E  WKB

knr
E  WKB(as)

knr
E  knr

E  WKB
knr

E  WKB(as)
knr

E  

(0, -1) 0.432 0.4408 0.4729 0.524 0.5322 0.5623 
(1,-1) 0.879 0.8838 0.8943 0.975 0.9791 0.9912 21S  

(2,-1) 1.197 1.2009 1.2066 1.294 1.2976 1.3049 
(0,-2) 0.735 0.7373 0.7504 0.837 0.8392 0.8460 
(1,-2) 1.088 1.0892 1.0947 1.187 1.1890 1.1927 23P  

(2,-2) 1.365 1.3667 1.3699 1.465 1.4659 1.4685 
(0, 1) 0.724 0.7293 0.7030 0.823 0.8278 0.7985 
(1, 1) 1.070 1.0733 1.0594 1.169 1.1728 1.1572 21P  

(2, 1) 1.347 1.3496 1.3405 1.446 1.4492 1.4390 
(2,2) 0.966 0.9671 0.9343 1.065 1.0665 1.0315 
(2,2) 1.258 1.2596 1.2385 1.358 1.3591 1.3369 23D

 (1,2) 1.505 1.5066 1.4914 1.605 1.6059 1.5901 
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where mQ and mq are masses of a heavy quark 
Q and light antiquark q  composing a meson 

qQ . Thus, the problem of obtaining a mass 
spectrum of qQ  mesons is reduced to succes-
sive calculations of energy eigenvalues of the 
Dirac equation (1) in the composite field (4), 
(5), the source of which, in this case, is a 
heavy quark Q. 

Above we did not take into account hyper-
fine structure of levels (HFS) and, conse-
quently, the offered potential model is able to 
foretell only the position of the center of 
weight of the HFS multiplet, formed by sub-

levels with the different moments QsjJ
rrr

+= . 

In real qQ  systems the degeneration of the 
doublet states, corresponding to the different 
moments 21±= jJ  at given j , is removed 

first of all by Qqss
rr

-interaction. Therefore, to 

have the capabilityto compare our theoretical 
predictions with the experimental data, in tab. 
2-3 we calculate the observed values of 
weight centre of masses of HFS multiplets by 
the known formula 

∑∑ +







+=

JJ
Jexp )J(M)J(M 1212 , (15) 

where JM  is the state mass with the total an-

gular moment J . 
Based on these observations, we at-

tempted to describe the mass spectra of the 
lowest states of heavy-light B( ub or db )-, 

)( sbBs -, D( uc or dc )- and )( scDs -mesons, 

considering σ  and λ  as universal values, and 
value of arguments sα  and 0V  as constants in  

each set of heavy-light mesons that is weak 
varying only at transition from one set to an-
other. 

The comparison of calculations results by 
the formulae (7) and (14) with the experimen-
tal data [16] demonstrates that the best 
agreement is reached for 3.0=λ  and follow-

ing set of parameters: 2GeV 18.0=σ , 
3860)or  ( .scucs =α , 30)or  ( .sbubs =α , 

MeV 375)or  (0 −=scucV , =)or  (0 sbubV  

MeV 450− , MeV 330=d,um , =sm  

MeV 500 , MeV 1500=cm  and =bm  

MeV 4880 . 
The mass spectra of D-, sD -mesons cal-

culated in this approximation are shown in 
tab. 2. Difference between the model and the 
experiment is within the limits of 3-5%, ex-
cept of masses of states 23P  and 21P  of the 

system sc , where the deviation depends on 

the interpretation of )2536(1
±

sD  meson and 

equals about 10 %, when considered as a vec-
tor state += 1PJ , belonging to the doublet 

+= 23j , or 4%, when attributed to the state 
+= 1PJ  of the doublet += 21j .  

For systems ub  and sb  (the tab.  3) a 
good coincidence of results represented by us 
with experimental data obtained for a ground 

state with −= 21j  and p-state with += 23j . 

For states of the doublet += 21j  there are 
only theoretical predictions of other authors. 
In the case of the system bu  our results agree 
with the data obtained in [17], and in the case 
of sb  systems we see the amazing coinci-
dence with results of papers [18]. 
 
 

Table 2. The mass spectrum of D-, Ds-mesons (in MeV). 
uc , dc  sc  

jN  ),( knr  theorE  theorM  expM  theorE  theorM  expM  

(0, -1) 427.8 2001.5 1971.1 514.4 2069.0 2072 
21S  

(1, -1) 880.5 2632.3 < 2637 957.8 2737.4 – 
(0, -2) 752.2 2443.2 2447.3 854.3 2552.1 2530.7 

23P  
(1, -2) 1106.4 2981.9 – 1207.2 3107.2 – 
(0, 1) 724.7 2403.7 2407.8 825.2 2508.5 2480.9 

21P  
(1, 1) 1075.8 2933.4 – 1177.4 3058.5 – 
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Table 3. The mass spectrum of B-, Bs-mesons (in MeV). 

ub , db  sb  
jN  ),( knr  theorE  theorM  expM  theorE  theorM  expM  

(0, -1) 440.8 5329.5 5313.5 532.2 5415.6 5404.8 
21S  

(1, -1) 883.8 5832.2 – 979.1 5931.2 – 
(0, -2) 737.3 5661.6 < 5698 839.2 5765.6 < 5853 

23P  
(1, -2) 1089.2 6078.4 – 1189.0 6186.8 – 
(0, 1) 729.3 5652.4 – 827.8 5752.2 – 

21P  
(1, 1) 1073.3 6059.0 – 1172.8 6166.8 – 

For the first radial excitations in qQ  sys-
tems the precision of determination of masses 
has appeared to be better (≤ 50 MeV) than for 
ground states. It is not surprising, as it is 
known, that the applicability of WKB ap-
proximation is justified only for highly ex-
cited states corresponding to rapidly oscillat-
ing wave functions. Hence, we obtain the ad-
ditional confirmation of validity of usage of 
the quasiclassical approximation for the Dirac 
equation with a scalar-vector coupling to 
heavy-light mesons as well as a clearer under-
standing of Lorentz structure of a long-range 
part )(rv  of interquark interaction potential. 

 
Appendix 
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РЕЛЯТИВІСТСЬКА КВАРКОВА МОДЕЛЬ D-, DS -, B- ТА 
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Побудовано релятивістську потенціальну кваркову модель важко-легких ме-
зонів, у якій рух легкого антикварка описується рівнянням Дірака з скалярно-
векторним зв’язком. У рамках квазікласичного наближення отримано прості 
асимптотичні формули для енергетичного і масового спектрів D-, DS-, B- та 
BS-мезонів, які забезпечують високу точність розрахунків навіть для станів з 
радіальним квантовим числом nr ~ 1. Отримані результати добре узгоджують-
ся з експериментальними даними. 

 


