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The relativistic potential quark model of heavyhlignesons describing the motion
of a light antiquark by the Dirac equation with @algr-vector coupling is con-
structed. In the quasiclassical approximation weehabtained the simple asymp-
totic formulae for energy and mass spectr®9fDs-, B- andBsmesons ensuring an
appropriate accuracy of calculations even for stati¢h the radial quantum number
n, ~ 1. Our results fully agree with experimental data

I ntroduction

As numerous experiments demonstrate
most of the known particles have an inner
structure, i.e. they are composite objects. First
of all it concerns hadrons (both mesons and
baryons), which according to modern vision
are the bound states of colour quarks and glu-
ons.

The description of mass spectra and decay
probabilities of composite objects precludes
the construction of the consistent theory of
bound states. Such theory should be founded
on basic principles of the local quantum field
theory (LQFT) and should use its formalism
[1]. However direct calculations of the speci-
fled characteristics of composite systems in
the framework of LQFT are hardly always
possible, because in LQFT the only known
way of calculation is based on the perturba-
tion theory, while the nature of creation of
bound states of interacting particles, uncondi-
tionally, should be determined by nonpertur-
bative effects.

The most effective way to go beyond the
framework of the perturbation theory when
constructing the theory of bound states is us-
age of dynamic equations. Even if it is possi-
ble to construct cores (potentials) of dynamic
equations only in the lowest orders of the per-
turbation theory, the elaboration of methods
of their precise or approximative solving (but
without the perturbation theory) allows to
take into account the contribution of nonper-
turbative interaction effects at calculations of
observed characteristics of bound states. In
the nonrelativistic case the similar theory is
constructed with the help of the dynamic
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Schrédinger equations on the language of
classic potential. However at large bound en-
ergies the suitable theory should be essen-
tially relativistic. In this regard about a half
century ago the way of solving the given
problem, based on using of the dynamic equa-
tions in the local quantum field theory, was
scheduled. Examples of such equations are
the Bethe-Salpeter equation [2], the quasipo-
tential equation [3] and other ones [4].

The effective Dirac equation method plays
an important role in the modern relativistic
theory of bound states. This method allows to
pass consistently from the two-particle theory
to the external field approximation [5]. As it
follows from the results in [5, 6], this possi-
bility is realized and has practical advantages
in the case of hydrogen-like atoms aQud]

systems. However, in the majority of prob-
lems, where the external field concept [6] is
physically justified, attempts to find exact so-
lutions of the Dirac equation with more or
less realistic interaction potentials still en-
counter insurmountable difficulties. Either
numerical or asymptotic methods are most
often used to calculate the solutions. In many
theoretical and applied problems precisely the
possibility of obtaining an asymptotic solution
permits analyzing the problem most com-
pletely. Therefore, it hardly needs saying how
important it is to create and develop asymp-
totic methods for solving the Dirac equation.
The construction of quasiclassical solu-
tions of the spinor equation with scalar-vector
coupling was recently given in [7, 8]. The
scheme of quasiclassical quantization, offered
in [8], allows to clear up connection of quasi-
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classical asymptotics in spectral problems for
the Dirac equation in external scalar and vec-
tor fields with Lorentz structure of the interac-
tion potentials corresponding to them.

In this paper, within the WKB method, the
behaviour of a spin-1/2 relativistic particle is
studied in the presence of scalar-vector exter-
nal fields with potentials of a confining type.
More definitively, when creating the relativis-
tic version of potential model which is taking
into account the Lorentz structure of inter-
guark interaction potentials, we used the Cor-
nell model offered in [9] in which the effec-
tive colour Coulomb attraction on small dis-
tancesr and string interaction at large are
taken into account.

Quasiclassical description of energy
spectrum of heavy-light quark-antiquark
systems

The problem of the motion description of a
relativistic particle of a spin-1/2 in a central
field composed of scalar and vector external
fields is reduced via the separation of vari-
ables to solving the system of radial Dirac
equations ¢ =1)

hdZ—Sr)+EF -[E-Vv(r)+m+s(r)]G=0,

hg%g—$G+E—VO%ﬂVSOHF:Q

(1)
where F(r)=rf(r), G(r)=rg(r), f(r) and
g(r) are radial functions for upper and lower

components of the Dirac bispinor [1#, and
m are the total energy and the rest mass of a
particle, S(r) is the scalar Lorentz potential,

and the potentia‘V(r) is the zero (time) com-
ponent of the four-vector A, = (A A):
A=0, V(r)=-eA/(r), e>0; k =7k, the
guantum number

_[-(+1) for j=1+y2 (1=01...)
k_{ I for }=|—1/2 (1=12..)

j is the total angular momenturhjs the or-
bital angular momentum.

The theory of a quasiclassical approxima-
tion of the Dirac equation a8 — @ith a
scalar-vector coupling began systematically to
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be elaborated in [8]. The formal asymptotic
expansions in powers df in the initial Dirac
system (1) for radial functionsF(r) and
G(r) lead to the hierarchy of matrix equa-
tions, which are solved consistently by known
technique of the left and right eigenvectors of
a homogeneous system. The wave functions
for the barrier-type effective potential (EP) in
classically allowed and forbidden regions
were constructed

E S?2-v2  k?
+
2mr

U(r,E):EV+S+ = (2)

2m

U(r,E)

i 'min | 1 y i} ; Lo |
T T T T T 1

I-l] r r Fmax I,

Fig. 1. Form of the barrier-type effective potehtia
U (r, E); E= (E2 -m? )/2m is the effective
energy; Iy,r; and I,

p?(r)=0.

are roots of equation

Also neglecting the barrier penetrability in
the regionr, <r <r, (see fig. 1), we have ob-
tained the quantization condition

J‘(p+klv]dr :(nr +1jn, 3)
e pr 2

where

W:l(—__
2\m+S+E-V r

p(r) =[(E-V)* - (m+S)> - (k/r)*]"?, s
the quasiclassical momentum for the radial
motion of a particlen, = 0,1,2,... is the ra-
dial quantum number.

To apply a potential approach for the de-
scription of the property of heavy-light mes-
ons it is important to construct an interaction
potential between quark and antiquark. As is
known in QCD [7, 11], the asymptotic free-
dom at small distances implies that the main

V'-8 lj
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contribution to theQq interaction is given by
the usual Coulomb potential of the one-gluon
exchangeV(r)=-4a,/3r, wherea, is the
strong coupling constant. As the distance in-
creases, the main contribution is given by the
scalar confining interaction (confinement)
whose "exact" form has not yet been found
within QCD. The confining potential can be
of complicated Lorentz structure. The lattice
calculations [12] based on the first QCD prin-
ciples distinguish the linear confinement as
the most argued one. Thus, for the long-range
part v(r) of interquark interaction we take the
linear potential v(r)=or +V, reproducing
results of lattice QCD-calculations fairly well
[13]. Hence we assume th&Q interaction
consists of: the one-gluon exchange potential
Voo (1) ==¢/r (£ =4/3a,); the long-range

linear scalar confining potential
_ 2
(1-22)0 2y
2m
u(r,E)= ErMyrs.
2m
y2
2mr?’

It can be seen that regardless of the sign of
the parameterw EP U (r,E) of the consid-
ered model (4), (5) is (at rather large dis-
tances) an attractive potential fdar>1/2 and
repulsing for A <1/2. Thus atA<1/2 EP
U(r,E) of model (4), (5) is an unboundedly
increasing (with increase) confining poten-
tial in which there is only discrete spectrum of
energy levels. The provisional form of EP
U(r,E) at A <1/2 is shown in fig. 2.

At 1>1/2 EP A <1/2 of model (4), (5)
looks like the well which is carved out from
exterior range by wide (gt <<1) potential
barrier (see fig. 1). Due to the barrier the solu-
tion of the Dirac equation in an external field
(4), (5) has a divergent wave asymptotics at
the infinity. This corresponds to a particle be-
ing in a quasistationary state and eventually
escaping from a decaying system [14].

The physical distinction between two con-
sidered casesA(<1/2 and A>1/2) can be
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S, (r)=(@-2)v(r); the long-range linear
vector potentiaV, , (r)=Av(r).

In this case the vector and scalar parts of
interquark interaction potential equal

V(1) =Veu () +V,, (r)

==&/r+A(or+V,),  (4)

S(r)=5.(r)==A)(or+v,). ©)

where ¢ is the electrostatic coupling constant,
Ais the coefficient of mixing of the scalar
S, (r) and vectorv,, (r) long-range poten-
tials (0< A < 1), o is the string tensiorV, is

the real constant.
In our model (4), (5) the asymptotic behav-
iour of the EP U(r,E) is of the form

.y I’—>00,/]¢£,
2

1

r—o, A==,

(6)

ro0y?=k?-¢&2

explained as follows. The existence of term
(s2-v2)/2m in the formula (2) for EP
U(r,E), which is characteristic for a relativ-

istic problem, demonstrates that in the
U(r, E)

r<1/2

t

A

Fig. 2. The effective potentidl (r, E) with po-
tentials (4), (5) in the cas®< A <12, 0 >0;
a, b, ¢ and d are roots of quasimomentum

p?(r)=0.
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case of repulsing A<1/2) in a long-range
part v(r) of interaction (4), (5) the relative
weight (1-4) of a Lorentz scalarS, (r)
prevails over the relative weightt of Lorentz
vector V,, (r), and in the case of attraction
(A>1/2) we have the contrary result. It
means that the effective confining interaction
(A <1/2) is predominantly scalar, and vector
potential V(r), which has deconfining action
regardless of the sign of the parameter
only corrects ERJ (r, E) at large distances.

At A1=1/2 and positive values o& we

obtain the linear confining potential which
has a discrete spectrum only. However, at
A =1/2 and rather small negative values of

o EP U(r,E) of model (4), (5) has a wide

barrier. Due to this there is a capability of de-
cay of a level by tunnelling through the poten-

O

tial barrier, i.e. the bound level transforms in
the quasistationary exponentially decaying
state with complex energf = E, —il/2.

Thus, for the specification stateme@Qqg
interaction by potentials (4), (5) we choose
the range of value® < A <1/2 of mixing co-

efficient A. Since one fails to obtain an exact
solution of the Dirac system (1) with poten-
tials (4) and (5), we apply the method of a
guasiclassical approximation which has, in
the case of scalar and vector fields of the Cou-
lomb-type and oscillator-type, a high accu-
racy even for small quantum numbers [8].

After substituting the potentials (4), (5) in
the quantization rule (3) and integrating we
arrive at the transcendental equation:

2V1-21 [|a|(b—c)2 {NIF()()+ NLE(r)+ N3 (v, x) + mr(%v,xﬂ

B 1/(a—cﬂb—di

K [lb-o)(NgM(v. )+ NgMl(v_ )+ Nﬁ(}())]} - (nr %jn

+2(1—2/])|J|

where F(x), E(x), and N(v, x) are the el-
liptic integrals of 1-st, 2-nd, and 3-rd order,
respectively. The expressions for, y, v,,

0 and N, (i=1...7) are rather cumber-

some and given in the Appendix. The turning
points d<c<b<a satisfy the equation

r*+ fr3+gr?+hr+1 =0, where

_ 2@~ 2)+En)

f= E=E-AV
-2 o
- E2 - m? - 280/
=m+(1-A , = - ,
m m ( )\/O g (1_2/1)0_2
h:—ﬂ | :y—2
(1-24)0?"  (1-2A)0?

"Weak coupling” approximation

Of course, in general, it is impossible to
obtain "exact" solution of the equation (7),
however, situation is simplified in the process
of increase of energ¥e or in the approxima-
tion of a "weak" (as contrasted to the Cou-
lomb field) long-range field. The first case

90

(7)

corresponds to not too large (i.e. "intermedi-
ate") values of parametersf and o

(0<02GeV? and 03<¢<08) at which

the condition E? >> gy is well satisfied for

all possible values of level energg,, of
heavy-light mesons, and the second case is
realized ato << &m?. For our purposes (i.e.
for physics of heavy-light mesons) only the
first case is interesting, whereas the second
one most often meets in approximated calcu-
lations of those properties of lowest hadron
states, which directly do not depend on exis-
tence or absence of confinement.

The simple and often effective way of ob-
taining asymptotic expansions of integral (3)
consists in expanding the quasimomentum
p(r) on small argument — perturbation and in
further termwise integration of the obtained
series. Thus, depending on value Bf with

respect to the leveE = M we shall consider
some most typical situations.
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A. Assume thatE<m and o << ém?,
then expanding the expressions for tuning
points in small parameteU/Em2 <<1 and

leaving only two terms in these series we ob-
tain

U

Cz—m_E—~E~,
g m-E

d=- m+ E +~E~’ )
oll-21) m+E

o | &2m? 282TE ~ M
r .,2{ > ‘kzj’ho"'(—z ®~K 0| Eo = >
2ém” |\ o Ho \/1+ &2/(n', +y)

where n7,, and 77,, are obtained accordingly
from expressions fory,, 77, by substitution
E.E,

B. In practically important regiorﬁ >m

and o > 0, representing substantial interest
for physics of heavy-light mesons, the small

dimensionless parametevly/lg2 arises in the

spectral problem. Atay/lg2 <<1 the ap-

proximated expressions for turning points are
of the form:

a=E-M, ¢ :zngf,
g E~—m E“-m
E+m '3
d= o
o(1-21) E+m

where 6= \/(Ek)z -(Wy)* , u =N -E?,
n=1-2A)M+AE, n,=Im+(1-A)E. It
follows from the formulae (8), (9) that at
small positive values o the turning points
c and d are rather far from the poirds b
and tend to a minus infinity whew — .0
Expand the quasimomentunp(r) in the
range of the potential webh<r <a in pow-
ers of r/|c|k<1 and r/|d [<<1. Then after
termwise calculation in (3) tabular integrals
with the precisionO((g/&m?)?) we obtain
the result for the energy of levels:

, (10)

Find the pointr dividing the integration
range b<r <a into the segmenb<r<r,
where the Coulomb potential dominates, and
the segment <r < a, where the long-range
linear potentialv(r) is dominating. In range
b<r<r we calculate the quantization inte-
gral (3), expanding the quasimomentys(r)
in a series in increasing powers of arguments
r/a<<l andr/|d k<1, and atr <r <a the
expansion ofp(r) is carried out in small pa-
rametersb/r <<1 and|c|/r <<1. As a result,

we obtain the transcendental equation with
respect to the energy :

lhm B arcCO@l/ﬂz) ’722 + A& |- yarcco _—Ef
20(24 -1) g

20(21 -1) V1-21

= on,8

_sgnk

N IIr{4e(|§2 - rﬁz)zJ

Though the equation (11) is much easier
than the "exact" quasiclassical equation (7)
for level energy, it is necessary to use numeri-
cal calculations to solve it. Below we consider
some limit cases, when the equation (11) is
simplified and can be analytically studied.
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(11)

to )
arcco =|n +=|m.
2 0 2

At values of argumentss < 02GeV?
and 03< ¢ < 08 for all possible values of

levels energyE, , of heavy-light mesons the

condition E >>m is well satisfied. If we ex-
pand the left-hand part of (11) M/E <<1 to
within the terms which are proportional to
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third power, then for the enerdy, , we arrive at the transcendental equation
[(1- A)A-A]E2 + 2WE(1- A)(AA-1) - 2mo(1- 2A)N — A2 + A[AA2 - 20€(1- A)|A=0, (12)

_arccodA/(1- 1)) o op Ll sonk 1 <&
= -2 , N=n + 2 4 +ﬂyarcco |k| .

Solving this equation by the method of series itens, as a first approximation we obtain the
required expression for eigenvalues of the endtgy (to within O(ay/Ez) ):

alk]

1/2
E, =¢" B+{BZ+Z{20(1—2)I)(£I #+3E+AEA+7NJ+/]mZ(1 )IA)N +AV,, (13)
4E©?

where ¢ =(1-1)?A- A _205(1_2;0/(@(0)) As it can be seen from table 1 the errors
= (1- A)(L- AA)F - 40E(L- 22)/E© in calculating the quasiclassical valuEgy -
EO=EO _ )y, N, = N(E = E@), and E"®® do not exceed 1% and 2%, re-

spectively (with the exception of states energy

E@ =E, (¢ =0) is the zero approximation. : ,
' with a radial quantum number, =0, where

Energy and mass spectra of heavy-light the error of both formulae ~8%). Thus, the
mesons precision of determination of,, by the
In table 1 the comparison of calculation re-  quasiclassical formula (13) is such that for
sults of levels energ;EWKB and EY®@) jn practical purposes there is usually no sense to

the basis of the transcendental equation (7) up(ljat?hthel flrzt. appro(;qmatlon. th
and the asymptotic formula (13), with precise n the leading order orf/m, the mass

valuesE, , obtained by numerical solving of ~ SPectrum of meson states with one heavy
. . quark is given by the expression [15]

the Dirac equation, are shown fof = 01,2

and k =+1+ 2. We selected such valuer,, M iheor Qq E. « \/E - +mQ (14)

A, Vg, m, 4 and mg, which are used in QCD

at the state description oB(buor bd)-,
B,(bsS) -, D(ct or cd )- and D(cS) -mesons.

Table 1. a,= 03 0=018GeV?, 1=03, V,=-045GeV,
m, 4 = 033GeV, m; = 05GeV andm, = 488 GeV.
bd , bd bs
Nj (nr,k) Enk EWKB Er\]/r\llfB(as) Enk EWKB Efo\/;(B(as)
(0,-1) | 0.432] 0.440¢ | 0.472¢ | 0.524] 0.532%| 0.562¢
Sy2| (1-1) [0.87¢| 0.883¢] 0.894: |0.975] 0.979:| 0.991:
(2-1) 11.197]1.200¢ | 1.206¢ | 1.294| 1.297¢| 1.304¢
(0,-2) 10.735] 0.737%| 0.750< | 0.837| 0.839:| 0.846(
Pyo| (1-2) [1.08¢]1.089:] 1.094: [1.187]1.189(| 1.192;
(2-2) 11.365] 1.3667 | 1.369¢ | 1.46%| 1.465¢| 1.468¢
(0,1 |0.724] 0.729%| 0.703( | 0.82%)| 0.827¢| 0.798¢
P2 | (1,1 ]1.07¢] 1.073¢] 1.059< | 1.16€¢]1.172¢| 1.157:
(2,1 [1.347]1.349¢| 1.340% | 1.44€| 1.449:| 1.439(
(2,2) |0.96€]| 0.9677| 0.934: |1.065|1.066%| 1.031¢

D
¥2[ (2,2) |1.25¢] 1.259¢| 1.238¢ | 1.35¢] 1.359:| 1.336¢
(1,2) |1.505] 1.5066| 1.4914|1.605| 1.6059] 1.5901
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wheremg andm, are masses of a heavy quark
Q and light antiquarkj composing a meson
Qg . Thus, the problem of obtaining a mass
spectrum ofQq mesons is reduced to succes-
sive calculations of energy eigenvalues of the
Dirac equation (1) in the composite field (4),
(5), the source of which, in this case, is a
heavy quarlQ.

Above we did not take into account hyper-
fine structure of levels (HFS) and, conse-
guently, the offered potential model is able to
foretell only the position of the center of
weight of the HFS multiplet, formed by sub-

levels with the different momentd = j + S-

In real Qq systems the degeneration of the
doublet states, corresponding to the different
momentsJ = j£1/2 at given j, is removed

first of all by s, -interaction. Therefore, to

have the capabilityto compare our theoretical
predictions with the experimental data, in tab.
2-3 we calculate the observed values of

weight centre of masses of HFS multiplets by
the known formula

M oo :(Z(ZJ +1)MJJ/Z(2J +1), (15)
J J

where M ; is the state mass with the total an-

gular momentJ .
Based on these observations, we at-
tempted to describe the mass spectra of the

lowest states of heavy-lighB(bt or bd )-,
B.(bS) -, D(cuor cd )- and D(cS) -mesons,
consideringoc and A as universal values, and
value of arguments, andV, as constants in

Table 2. The mass spectrum{ D

each set of heavy-light mesons that is weak
varying only at transition from one set to an-
other.

The comparison of calculations results by
the formulae (7) and (14) with the experimen-
tal data [16] demonstrates that the best
agreement is reached far=  (ehd follow-

ing set of parameters:o = 018GeV?,
a(cu orcs) =0.386, a,(bu orbs) =0.3,
V,(ctu orcs) =-375MeV, V, (bt orbs) =

—-450MeV m,q =330MeV, m, =
500MeV, m,=1500MeV and m, =
4880MeV .

The mass spectra @&f-, D,-mesons cal-
culated in this approximation are shown in
tab. 2. Difference between the model and the
experiment is within the limits of 3-5%, ex-
cept of masses of stat¢, and B, of the
system cs, where the deviation depends on
the interpretation ofD_*(2536 meson and
equals about 10 %, when considered as a vec-
tor state J* =1, belonging to the doublet
j=3/2", or 4%, when attributed to the state
JP =1" of the doubletj =1/2".

For systemsbu and bs (the tab. 3) a

good coincidence of results represented by us
with experimental data obtained for a ground

state with j =1/2" andp-state with j =3/2".
For states of the doublef=1/2" there are
only theoretical predictions of other authors.

In the case of the systeﬁ‘}J our results agree
with the data obtained in [17], and in the case
of bS systems we see the amazing coinci-
dence with results of papers [18].

mesons (in MeV).

cu, cd s
Nj (nr ' k) Etheor M theor M exp Etheor M theor M exp
S, (0,-1) | 427.8| 2001.% 1971.1 514/4 2068.@072
2 (1,-1) | 880.5| 2632.3 <263y 957.8 2737.4 —
Py, (0,-2) | 752.2| 2443.2 244783 8543 255R2530.7
(1,-2) | 1106.4 2981.9 — 1207.2 3107.2 —
b (0,1) | 724.7| 2403.7 2407.8 8252 25082480.9
V2 [7(1,1) | 1075.8 2933.4 - 1177.4 30585 —
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Table 3. The mass spectrumBsf Bs-mesons (in MeV).

bu, bd bs
Nj (nr ' k) Etheor M theor M exp Etheor Mtheor M exp
S (0,-1) | 440.8| 5329.% 53135 532|2 54155104.8
(1,-1) | 883.8| 5832.2 — 979.1 5931.2 —
Py, (0,-2) | 737.3| 5661.6 <5698 8392 576565853
(1,-2) | 1089.2 6078.4 — 1189.06186.8] —
P 0, 1) 729.3| 5652.4 — 827.8 5752.2 —
Y2 (1,1) | 1073.3 6059.0 — 1172.86166.8] —
For the first radial excitations iQQ sys- N, = )(2(b—c) B SD(b—c) ) (X2 _1)(f +3C)

tems the precision of determination of masses
has appeared to be betteg50 MeV) than for
ground states. It is not surprising, as it is
known, that the applicability of WKB ap-

4 81-v) 2

+ﬁ(c3+c2f +cg+h+|/c),
-c

proximation is justified only for highly ex- N _K[f +3C+§(b—c)D}

cited states corresponding to rapidly oscillat- 27 o 4 [ ’

ing wave functions. Hence, we obtain the ad- 2

ditional confirmation of validity of usage of N, :l §(b_C)D + 20 (302 + 2cf +g)
the quasiclassical approximation for the Dirac 214 0 (b-c)

equation with a scalar-vector coupling to

heavy-light mesons as well as a clearer under-
standing of Lorentz structure of a long-range
part v(r ) of interquark interaction potential. N, =- O

+(b—c)((1+)(2)|/—3)(2)+D(f +Sc)},
. Ng=[b=-A)A -7,

Appendix

V:a;b X= Vﬂ vV :HV 2
a-c’ V (o-d)’ * A -b N7= = (C+

O0=@-v)(x*-v),
O=x*@-2w)+v(v-2),
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PEJATUBICTCBKA KBAPKOBA MO/IEJIb D-, Ds-, B- TA
Bs-ME3OHIB

B.10O. Jla3yp, O.K. Peiiriii, B.B. Py0im

VYKropoJChbKUil HalliOHATbHUN YHIBEpCHUTET, ByIl. Bonommna, 54,
VYxropoa, 88000,Ykpaina

[ToOymoBaHO PENsSTHBICTCHKY MOTEHIIAIBHY KBAPKOBY MOJIENb BAXKKO-JIETKHX Me-
30HIB, Y sIKill pyX JIETKOTO aHTHKBapKa OMHUCYETHCS PiBHAHHAM Jlipaka 3 CKaJlspHO-
BEKTOPHHUM 3B’ SI3KOM. Y paMKax KBa3iKJIACUYHOTO HAOIKEHHS OTPUMAHO MPOCTI
acUMNTOTHYHI HOPMYITH Ui €HepreTHYHOro i MacoBoro crekrpiB D-, Ds, B- Ta
Bs-Me30HiB, sKi 320€3MeUyIOTh BUCOKY TOYHICTh PO3pPaxyHKIB HaBiTh JJISl CTaHIB 3

pamianbHUM KBaHTOBUM 4yuciioM Ny ~ 1. Otpumani pe3ynabTaTe 100pe y3roKyIoTh-

CA 3 CKCIICPUMCHTAJIBHUMHU JTAHUMU.
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