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A system of hydrodynamic equations is considered to describe temperature and con-
centration relaxation in superfluid *He-*He mixtures. Temperature and concentration
relaxation is found to be determined both by the second sound mechanism and by
the dissipative diffusive process. An analytical solution of this system is found. The
obtained solution is compared with the results of experiment, where the kinetics of
temperature change and concentration change in the superfluid *He-*He mixture,
when the thermal flow was switched on or switched off, was measured.

Introduction

Relaxation and concentration processes
in superfluid *He-*He mixtures are very un-
usual [1]. When heat flux presents, simulta-
neous appearing of temperature and concen-
tration gradients in this system means that
thermal conductivity, thermal diffusion and
mass diffusion are interconnected. Theoreti-
cal investigations of kinetic and relaxation
processes in superfluid mixtures [2-3]

showed that in this system temperature and
concentration relaxation is found to be de-
termined both by the second sound mecha-
nism and by the dissipative diffusive proc-
ess.

A similar situation when heat is carried
not only by thermal conductivity mechanism
exists in all physical media. In order to solve
the problem of such heat distribution, one
should start with the complete system of hy-
drodynamic equations.

The System of Hydrodynamic Equations and Its Solution

We solve the system of hydrodynamic equations of the form:
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with the initial conditions:
p(x,t=0)=0,

u(x,t=0)=0,
T(x,t=0)=0(x),
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where p(x,t) is the density deviation from the
equilibrium value py, u(x,t) — is velocity,
T(x,t) — temperature deviation from the equi-
librium value T, p is pressure, y =x/C, —

temperature conductivity, xis the thermal
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conductivity, C, is the density of thermal

capacity at constant volume.

We investigate the solution of these
equations in the infinite area assuming that
the deviations of macroscopic variables tend
to zero on infinity. Then we can define Fou-
rier transform for p(x,t), u(x,t), T(x,t), and for
Fourier transformations of these variables
one then obtains the system of equations:

d .
3, P (1) = —ipqu ,,

0 ) .

Euq(t) =—iaqp, —ifqT ,, (3)
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ET"U) = —ipgqu, - xq°T, ,
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Cc,\oT ),

Let us consider three-dimensional space
of vectors with coordinates corresponding to
the hydrodynamic variables:

1 (op
)
0
pO T P (4)

p, (1)
a(t)=|u,(t) |.
T, (1)

©)

Then the system (3) can be rewritten as the
differential equation:

0
aa(t) =M a(r) (6)
with the initial condition:
p,(0)
a(t=0)=|u,(0) |=a,. (7)
T, (0)

Matrix of the system (6) has the form:
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0 —igp 0
M,=|-iag 0 —ifq |. (8)
0  —img -x9°

To find eigenvalues A; (i=1, 2, 3) of this
matrix we note that hydrodynamic descrip-
tion can be used only for phenomena slowly
changing in space. This means that in Fou-
rier transform only terms with small pa-
rameter ¢ are significant. Hence, we can con-
sider eigenvalues only in case of ¢g—0. In
this case values A; can be written as follows:
i = aiqg + big" + O(g’). One then obtains
three eigenvalues of the form:

A =—icgq _quz’
A, =—icsqg —Tyq?, )]
A=—xq

1

C 2

where ¢ = —”(a—pJ is the sound ve-
V ap T

. k[ 1 1 . .
locity, I';=—|———1 is damping of

sound.

Since matrix M . is non-Hermitian both
left and right eigenvectors exist, and they can
be derived from equalities: M, Xi=A4.Xi,
YiM,=AY;, (i=1,2,3). And when g— 0 are
given by:

1/2 p
X, :[ G, } tc,
2C, ‘
T(op/or),
pC, (10)
{C _CVJI/Z p
X, =| 2 0 ,
Cl’
_p(/op),
(ap/aT)p
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(6p /T) The found eigenvalues and respective
=lt————,0, ——2|, eigenvectors of matrix M allow the system
@ioo), " (@iop),

(11) (3) to be solved.

The Problem of Temperature Relaxation in the Infinite Media

We solve the system of hydrodynamic equations of the form
We develop a upon eigenvectors: a=a; X;+a:X>+a3;X3, where o=(Y;, a), i=1,2,3. Then
the solution of system (3) has the form:

p, (1) = ae M xV +ae M xP +aeH xY,

_ 2t (1) — 2yt _(2) — At _(3)
u,(t)=ae x, +a,e X, +ae x,, (12)
T,(t)=ae "'xi" + a,e ' x{P + ae” " x.

After inverse Fourier transform we obtain the solution for the instant sources of the form (12):
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Here Green’s functions are introduced,
that correspond to the hydrodynamic modes
(10) and (11). Function

G,(x,1)= fj, (14)

! exp| —
Jazyt 4yt
describes relaxation caused by dissipa-

tive mechanism of thermal conductivity, and
functions

(%) (‘x i cs‘t)z . . . . . . .
G (x,t) = exp| ——— | (15) Fig.1.Temperature distribution in infinite one-

1
VAt 4t dimensional area from the point heat
describ 1 . 4 b d source.Dotted line is temperature dependence on
escribe  relaxation  cause y soun distance. Solid line presents the dissipative

propagation. Examples of calculations on mode. Stroke-dotted line presents the sound
formula (13) are given in Fig.1. mode.
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The Problem of Switching on a Heat Flux
on a Segment

We solve system (1) on a segment 0 <x
<[, with 0 <t < o0 and with the boundary
conditions:

T!(x=0,t)=—q, /K,

t
T, (x.0) = [ 24,
0

k=0

T(x=1,t)=0. (16)

ux=0Lt)=u(x=0,t)=0,

where g, 1s the heat flux that switches at /=0.

Using method of source images we ob-
tain expressions that express solution on a
segment via solutions (13):

i (=D (T (2K + x,t) =T (2 (k + )] + x,1))) dt

Uy (X,1) = quoi (=D (u 2kl + x,t) —u(2(k +1)] + x,t))) dt 17

0

px.1) = [ 24,
0

k=0

D (=D (P Q2K +x,0)=p(2(k +1)] + x,1))) dr

. L[
0

The examples of calculations according
to Eq. (16) are given in Figs.2, 3.
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Fig.2. Temperature dependence on time(in case
of the large sound mode and weak sound
damping) in the middle of a segment at one end
of which is constant heat source and constant
temperature is supported at the other end. Dotted
line presents temperature dependence on
distance. Solid line presents the dissipative
mode. Stroke-dotted line presents the sound
mode.
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Fig.3. Density distribution at a segment at one
end of which is constant heat source and constant
temperature is supported at the other end. Line 1
presents the sound mode. Line 2 presents
temperature dependence on distance. Line 3
presents the dissipative mode.

Description of the Experiment

Quantum superfluid *He-*He mixtures
have a great number of unique features. One
of them is the fact that in these mixtures the
sound mode and the dissipative mode are
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connected with the factor that has the mean-
ing of thermal extension for usual sub-
stances.

: | (18)

Here u; is the second sound velocity,
2 _ IDSEZT

* P.PCy
namic parameters of quantum mixtures [1].

When temperature is low enough so that
thermal exitations of “He can be neglected
the system of hydrodynamic equations for
mixtures becomes analogous to the system
(1) after respective variables substitution.
Hence, solutions (13) and (17) that were ob-
tained here for usual liquids can be used for
quantum mixtures.

The main difference of quantum mix-
tures is that the factor (18) can take any val-
ues from much smaller till much larger than
1 [4-6]. This fact stimulated investigators to
make a number of experiments related with
observation of temperature relaxation in *He-
‘He quantum mixtures [7-11]. In this manu-
script those experimental data are investi-
gated.

Experiments were made at constant tem-
perature of the higher flange, herewith spe-
cific power from 0.5 till 25 mW/sm® was
given to a heater. Temperature relaxation and
concentration relaxation were measured

, p., p,, S are thermody-

when heat flux was switched on. Mixture
with initial concentration 9.8% of *He was
investigated at temperature range 150 — 400
mK with pressure 0.38 bar.

4 000

3 000

2000
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Fig.4. Temperature dependence on time. Solid
lines are theoretical curves. Dots are experime n-
tal data.

From stationary temperature values 77,
T, we find thermal conductivity value

k=q,Al (T, —T)=2.1-10"* J/(cm K

s), where Al is distance between detectors.
For given experimental conditions we know
thermal capacity value Cy=0.26 J /(g K) and
density value py=0.1451 g/cm’. Substituting
this values into the solution we obtain de-
pendency temperature on time, that is shown
as solid lines in Fig.4. As we can see from
Fig.4 theoretical calculations are in good
agreement with experimental data which are
indicated as dots in Fig.4.
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3BYKOBA I JUCUITIATUBHA PEJIAKCAIIIS B
HAJIIJINHHUX PO3YNHAX *He-*He
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1. CBoboau, 4, Xapkis, 61077
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PosristHyTO cHcTeMy piBHSHB TiIpOJMHAMIKH JUIS ONUCY pellakcallii TeMnepaTrypH B
HaamMHEEX po3unHax ~He-‘He. Pemakcariis TemmepaTypy i KOHIEHTpaIlii BU3HA-
9a€eThCS SIK MEXaHI3MOM JAPYToro 3BYKY, TakK 1 AUCHUIATHBHUM IUGY3iHHUM mpolie-
coM. 3HaWICHO aHATITHYHHUHA Po3B'I30K Ii€i cuctemu. I[IpoBeaeHO MOPIBHSIHHA OT-
PUMAaHOTO PO3B'A3KY 3 €KCIIEPUMEHTAIFHUMH JaHUMH BUMipIOBaHb KIHETHKU 3MiHH
TEMIIEpaTypH i KOHIEHTpALi HaAIIHHHOTO posunny "He-'He mpn BKmoueHH! un
BHUKJIFOUEHHI TETUIOBOTO MOTOKY.
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