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The problem of stability and spectrum of linear excitations of a soliton (kink) of the
dispersive sine-Gordon and ¢~ equations is solved exactly. It is shown that the total
spectrum consists of a discrete set of frequencies of internal modes and a single band
spectrum of continuum waves. It is shown by numerical simulations that a transi-
tion motion of a single soliton in highly dispersive systems is accompanied by ars-
ing of its internal dynamics and, in some cases, creation of breathers, and always by
generation of backward radiation. It is shown numerically that a fast motion of two
topological solitons leads to a formation of a bound soliton complex in the dispe-

sive sine-Gordon system.

Introduction

The soliton theory of nonlinear systems
in the long-wave limit is developed quite
well [1,2]. Typical examples of soliton exci-
tations are dislocations in an imperfect lattice
[3], fluxons (magnetic fluxes) in arrays of
the Josephson junctions [4], magnetic and
ferroelectric domain walls, and nonlinear
excitations of microtubules in nerve tissue
cells [5]. These topological solitons are de-
scribed in the long-wavelength limit in the
framework of the usual sine-Gordon and ¢*-
models [1,2]. Discrete versions of the sys-
tems demonstrate new properties, which are
known as the discreteness effects [6,7]. Such
effects in the discrete sine-Gordon system
are described by the equation [7]:

2
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where d is a discreteness parameter. Since
the frequency of linear waves w depends
strongly on the wave number :

o(k)y=d 2 +2(1-cosk),  (2)
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the discrete models are naturally related to a
class of highly dispersive systems. The
strong spatial dispersion in lattice systems
can change drastically the dynamic proper-
ties of nonlinear topological excitations. In
the medium with strong dispersion the non-
linear waves exhibit a complex intrinsic
structure which manifests itself in their abil-
ity to be flexible. As a result, discrete soli-
tons can possess internal degrees of freedom
and, hence, internal modes of oscillations
[8]. Another example of highly dispersive
models is a continuous sine-Gordon model
with non-local but short range interaction [9]
which is often employed for description of
dynamical behavior of excitations in the long
Josephson junctions.

Analytically the strong dispersion can be
taken into account by adding the fourth-order
spatial derivative in the expansion of the
second difference

Up_] FUpp] —2Upy RUyy + Py )

where x=n/d and the parameter y =1/12d".
However, the use of the equations with the
fourth-order spatial derivative leads to an
artificial instability of the u=0 state with re-
spect to short waves generation. In fact, the
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dispersion relation for linear waves in the
equation has the form

o@)=\1+q> ~*). @
and it is easy to see that the frequency be-
comes zero at a finite ¢y. To avoid the insta-
bility, Boussinesq’s primary idea of using
the mixed spatio-temporal derivative, instead
of the spatial one, has been applied to the
dispersive sine-Gordon and double sine-
Gordon equations [10—13]. Rosenau [14] has
argued for this substitution in the lattice the-
ory, and presently this method is actively
revised [15, 16] in the theory of the discrete-
ness effects. In particular, it has been also
shown [17] that this approach is effective
under the description of the discrete breather
effects in the Fermi-Pasta-Ulam lattice.

In this work we study topological soli-
tons and their bound complexes in the
framework of the sine-Gordon and o*-
equations with the mixed spatio-temporal
derivatives. We find exact solutions of these
equations corresponding to static kinks and a
moving soliton complex. We obtain explicit
expressions for frequencies of internal
modes of kinks of the equations and show
numerically how they manifest themselves in
the single kink dynamics. Then we study
kink interactions in the dispersive sine-
Gordon system and find the conditions of a
formation of bound two-soliton complexes in
a highly dispersive system.

Dispersive nonlinear equations
and exact soliton solutions

In this section we introduce the disper-
sive sine-Gordon equation (dSGE):

Uy —Uxy — Py +sinu =0, (5)

and the dispersive @*- equation

3
P1t = Pxx = PPt —0+9” =0 ()

and present their exact soliton solutions. The
constant f in the equations (5) and (6) is
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called the dispersive parameter. The equation
(5) has the dispersion relation of the form

oy (k) =1+ K2) (1 + ) -

and, hence, stable states with u=0, 2z, 47 ...
[13] in contrast to the equation with the
fourth spatial derivative u,,.,. The equation
(4) has two equivalent stable states with
u=+1 and the dispersion relation

0y () =+ K2) 1+ ), (8)

The first peculiarity of the both spectra is
a finite frequency band for continuum
waves. It should be also noted that with the
increase of the parameter B both spectral
bands shrink and become more and more
narrow. When B=1 and p=1/2 for the dSGE
and the dispersive ¢*- equation the contin-
uum wave spectra degenerate to the fie-
quency values m=1 and 2", respectively. For
B>1 and B>1/2 the spectra have maxima at
k=0 and, in general, take the form of optical
vibration branches which are typical for
diatomic systems. In fact, it can be shown
that the slow-varying envelope of optical os-
cillations in the diatomic system obeys the
equation with the fourth-order mixed spatio-
temporal derivative.

The dispersion relation for the dSGE at
small £ takes the form which is similar to the
expansion of the expression (4) for the
model with the spatial derivative in the long
wave limit:

w(k) z1+l(1—ﬁ)k2/2—
2 . (6)
1= P13

By comparison of the expressions we
find the relations between the parameters of
the two models: g=(1-B)""*k and y= /1-.

When =0, both equations become the
usual Lorentz-invariant sine-Gordon and ¢*-
equations. Their simplest soliton solutions,
kinks, are well-known [1]. These solutions
describe inhomogeneous states in which
topological solitons connect two minima of
the external potentials of the models. It is
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easy to see that the static kink solutions of
the usual sine-Gordon and ¢*- equations re-
main the exact solutions of the dispersive
equations (5) and (6). They have the form

up, =4arctan(exp(x)), (10)

&y

respectively. In the case of f=0 the moving
solutions are obtained by the use of the
Lorentz transformation of the coordinate
zz(x—Vz‘)/(l—Vz)l/2 in the expressions (10)
and (11). However, it has been shown [12,
13] that the moving single kinks are absent
as exact solutions in the case of B#0. The
equations for moving solutions are written as

@( (x) = tanh(x/ V2),

uZZ+auZZZZ—sinu:O’ (12)
3_
Uy +0U 5 —u+u” =0 (13)
where the parameter a is defined as follows
pr’
o =———. 14
(1-V?)? (14

This parameter plays an important role in
understanding the dynamics of the dispersive
models. It is clear that for small B and V the
dynamical properties of the models have to
be close to those of the usual Lorentz-
invariant systems. The formal perturbation
theory, considering o as a small parameter,
gives e.g. for the kink of the equation (12) in
the first approximation:

u(z)=uy,(z)+a(3 sinhz__

cosh2 z

2y, (15)

coshz

It seems that the asymptotic series could be
constructed with arbitrary accuracy [18].
Nevertheless, the series (15) and a similar
one for the equation (13) do not converge,
therefore equations (12) and (13) do not pos-
sess solutions exactly satisfying boundary
conditions for single kinks. Numerical
simulations confirm this fact (See below).

At the same time in the case of the dis-
persive sine-Gordon equation the moving
bound two-soliton complex solutions can
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exist. One of them has been found analyti-
cally [10]:

u,_(x)=8arctan< exp \/5 V!
4z - 5 B
3 J1-V;

where the velocity of the complex is the
function of the dispersive parameter:

()= 1+2 - B

Other soliton complex profiles can be
found numerically while their velocities
comprise the discrete set of definite values
[12, 13].

(16)

(17)

Spectra of linear excitations of kinks
in highly dispersive systems

Here we find the spectra of linear exci-
tations of the static kinks given by the ex-
pressions (10) and (11). The problem of the
spectrum for the dSGE is formulated as the
following. We seek for the solution of the
equation (5) in the form

u(x,t) =u, (x)+Au(x,t)=

. (18)
=u, (X)+ f(x)exp(ior)

where Au(x,t) is assumed to be small with
respect to the kink solution. The linearized
equation for the function f{x) is the
Schroedinger equation with the well-known
potential well [19]

e g a2 L
{“ po) gzt coshzx}f =" (19)

=@’ f(x)

One can construct a complete set of solutions
of the equation (19) using results for the ei-
genvalue problem presented in [19]. It is
evident that the continuum spectrum of the
problem is given by the expression (7). The
discrete values of the internal mode frequen-
cies can be found from the equation for the
discrete energy levels:

2
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where 7 is an integer. The number of levels
is determined by the value of the parameter
B. The zero eigenvalue wy=0 corresponds to
n=0 and the ground state eigenfunction de-
scribes the translational mode. With the n-
crease of the parameter f all the internal
mode frequencies detach consequently from
the low edge of the continuum spectrum. The
threshold value of the parameter § for the n-
th mode is given by the expression:

2
P _l_n(n+1)
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The expressions for the frequencies of
all modes can be written explicitly. For ex-
ample, the first internal mode squared fre-
quency has the form

1A*-9
Ty
(22)
Ap)= 6B++178%-108+9
1+

The mode detaches from the continuum
spectrum at small  as follows:

2 2 10 3
Rl-—p°——p" +
9’8 SIﬂ

. (23)

Its behavior coincides qualitatively with the
frequency dependence on the discreteness pa-
rameter in the discrete sine-Gordon system [8,
15, 20]. It should be noted that in the case of
the continuum spectrum degeneration (B=1)
the whole infinite set of the frequencies of n-
ternal modes is expressed very simply:

0, = \/1_;. (24)
(n+1D)(n+2)

The problem of the linear excitation
spectrum of the dispersive ¢*-model kink is
solved similarly. At first we derive the line-
arized equation for the function of small de-
viations from the kink shape

Ap(x,t) = p(x,t) — @y (x) =

= y(x) expliar), )
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and finally the equation for y(x):

PP N P S _
{(l po )abc2 2 coshz(x/\/z)}l//(x) (26)

=0’ w(x).

The equation for the spectrum eigenval-
ues can be written as follows:

1,6 _Pe-e)_ 1.7
4 1-pa® | 1-pw? 2

The translational mode with n=0 and wy=0
exists in general at f#0. The first internal
mode (n=1) corresponds to the oscillation of
the soliton width. The expansion of the fre-
quency of this mode at small B has the form

o (f)~ f( ——ﬂ—%ﬂ

In the case of B=0 it is reduced to the well-
known shape mode of the usual ¢*-model:

L) (28)

Ap(x,t) =y, (x)sin(w;t) =

_ smh(x/\/_) (\/7)
coshz(x/\/_)

The expression for the moving ¢*-kink with
this internal mode can be obtained by the use
of the Lorentz transformation: z=(x-Vt)/(1-
V)2 and t=(t-Vx)/(1-V*)"? 1t is evident that
this mode does not influence the translational
motion of the mass center, and the velocity
of the kink is constant.

In a dispersive system the excited kink
undergoes simultaneous oscillations of its
width and velocity. Even in the weak disper-
sion limit the kink plays the role of the
moving source of radiation and can produce
linear excitation with the wavelength A=2mn/k,
where the wave number is determined from
the equation w(k() =Vk. With the disper-
sion increase the effect of internal modes
grows and the contribution of the continuum
waves diminishes. First of all, this result can
be applied to the interpretation of the kink
motion in the dispersive ¢*-model even in
the case a <<l due to the existence of the
well-defined shape mode (29). Besides this

(29)
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internal oscillation, the second internal mode
in the dispersive ¢*-model detaches from the
continuum spectrum as follows:

_ 468
625

Thus one can expect that in the case of
the small dispersion the kink motion in the
dispersive sine-Gordon system can cause the
excitation of one weakly-localized internal
mode with the frequency of Eq. (22) whereas
in the dispersive ¢*-model the moving kink
can be accompanied by two excited internal
modes. In the strong dispersion limit the in-
fluence of the internal modes becomes cru-
cial. The predictions of the theory are vern-
fied numerically in the next section.

wz(ﬂ)zﬁ(l—%ﬂz B3 +..)(30)

Numerical simulations
of the topological soliton dynamics

We have investigated the kink dynamics
in the dispersive sine-Gordon and ¢*-model
by computer simulation. To model the dis-
persive equations we have used a highly sta-
ble difference scheme which is similar to the
one proposed in [9]. Typically we have used
time step Az=0.0001 and spacing Ax=0.02 in
a system consisting of 3000 sites. The initial
expressions for the soliton evolution have
been taken from equations (10), (11), (15)
and (16). Typical values of the dispersive
parameter 3 have been 1/12, 1/6, 1/4, and 1
and the initial velocities Vi, have been cho-
sen in the interval between 0.3 and 0.9.

0,500-
0,496 -

0,492

dX /dt

0,488 -

0,484-

T T T T T T T T T T T

0 5 10 15 20 25 30
t

Fig.1. Temporal dependence of the velocity of the
kink mass center in the dispersive sine-Gordon equa-
tion at § =1/12 and V;, =0.5.
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Our results are summarized as the fol-
lowing. At very small values of the disper-
sive effective parameter oo < 0.01 we have
found that the dynamical properties of a sin-
gle kink in both models differ slightly from
those in the usual Lorentz-invariant equa-
tions. However with increasing velocity the
new effects take place while details of the
kink motions have appeared important. First
of all we have calculated the velocity of the
kink mass center as a derivative of the kink
center coordinate on time. The result for the
dSGE kink at B =1/12 and Vi, =0.5 is pre-
sented in Fig.1. One can see that the kink
velocity begins to decay rapidly and then it
oscillates, approaching another quasi-
equilibrium value. The kink tail also slightly
oscillates but no forward radiation is ob-
served. As a whole the kink evolution can be
described in terms of the combined mode of
translational and internal motions affected by
the radiative dissipation effect. For larger
initial velocity (Vi, =0.6) the kink oscillating
tail becomes visible (Fig.2) even if we have
started from the improved kink profile (15).
The role of the radiation is much less for
small a in the dispersive ¢*-model. For this
case the velocity of the ¢*-kink center is in-
dicated in Fig.3 when the initial value was
chosen as Vi, =0.3. Instead of the velocity
decay we see the two-frequency modulated
velocity. This fact reflects the existence of
two internal modes (28) and (30) in the ¢*-
kink spectrum and leads to the generation of
a complex breathing excitation.

10 20 30 40 50 60
X

o -

Fig.2. The moving kink profile with the oscillating
tail in the dispersive sine-Gordon equationat 3 =1/12
and V;, =0.6.
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Fig.3. Temporal dependence of the velocity of the
kink mass center in the dispersive ¢*-equation at B
=1/12 and V3, =0.3.

When the parameter  is not small and
the velocity is large enough the dynamics of
the kinks at the first stage becomes strongly
non-stationary and dissipative as in the
highly discrete systems [7]. A new channel
of the kink energy loss arises due to the
breather appearance at the kink wake. This
process is demonstrated in Fig.4 for the -
system, where three consequent temporal
positions of two excitations, the stationary
kink and the static breather mode, are shown.

At the same time if the parameter a is
large due to the large velocity, a formation of
the bound soliton complexes becomes possi-
ble in the highly dispersive sine-Gordon
system. Beginning the study of this phe-
nomenon, first of all we were convinced that
the exact solution (16) with the velocity (17)
is absolutely stable and the soliton complex
propagates without any radiation. If one
chooses the initial profile in the same form
but the velocity of the complex is rather
small (e.g., Vin =0.3) then the complex is dis-
sociated in the explosive manner as indicated
in Fig.5. Note that the complex center has
been placed initially at the position x=20.
However, the strong repulsion of kinks has
caused their mutual fast escape in opposite
directions with the velocities V7 = -0.25 and
V> = 0.62, respectively. We have also inves-
tigated a possibility of realization of the ex-
cited soliton complex states as it has been
predicted in [13]. Indeed, we have found
such a situation in the weak dispersive case
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for B =1/12 and Vi, =0.5. It is remarkable that
this excited soliton complex survives (Fig.6)
and appears to be stable.

1,04
0,54

0,04

o(x)

-0,5-

P

1,0

10 20 30

o -

X

Fig.4. The moving kink and the stationary breather
mode in the dispersive ¢*-system.

84

-4

-8

Fig.5. The soliton complex dissociation in the case of
a small initial velocity (V;, =0.3) in the dispersive
sine-Gordon equation.

8-

-4

.84

Fig.6. The stable excited soliton complex state and the
breather mode in the dispersive sine-Gordon equation.
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Conclusions

We have investigated the internal kink
dynamics and the soliton interaction in the
dispersive sine-Gordon system, and the kink
evolution in the dispersive ¢*-model. For
the first time we have found analytically all
the spectra of linear excitations of static
kinks in the models and have studied nu-
merically a large variety of the dynamical
effects caused by the influence of the dis-
persion which are inherent in nonlinear dy-
namics of topological excitations in lattices
and continuous systems with non-local in-

teractions. We have shown that the pro-
posed models adequately describe the main
features of one-dimensional dispersive mi-
crostructured systems and macroscopic lat-
tice-based media. They can be considered as
very attractive objects for a study of novel
universal effects in the nonlinear dispersive
media. It should be noted that a lot of inter-
esting phenomena has appeared to be be-
yond the scope of this study. In particular,
there is a problem of description of the
breather properties in the dispersive systems
with a finite band spectrum. Now this work
is in progress.
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BHYTPILIHI MO OCLUMJISALIIA TONOJOTTYHUX
COJIITOHIB Y CEPEJOBUIIAX 13 CWJILHOIO
JUCIEPCICIO

O.B.Yapkina, M.M.boraaun
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TouHO pO3B’s3aHO TPOOIEMY CTIHKOCTI i CHEKTPY INiHIHHUX 30yIKEHb COJITOHA
(kiHKa) IS TUCTIEPCIHOTO piBHSAHHS cHHYC-I'OpoH Ta (|)4—MOZ[GJ'Ii. IToka3zaHo, 110
MOBHUH CIIEKTP KOJIMBaHb COJITOHA CKJIANAa€Thcid 3 ANCKPETHOTO HAabOpy 4YacToT
BHYTPIIIHIX MOJ 1 OJHO30HHOTO CYHiJIFHOTO XBHJIBOBOIO CIEKTPY. 3a JIOTIOMOTOIO
YHCENBHOTO MOJEIOBAHHS ITPOJEMOHCTPOBAHO, IO TOCTYIIOBHH PyX OJWHOKOTO
COJITOHA y CHCTEMax 3 CHJIBHOK JIUCIIEPCIEI0 CYMPOBOIKYETHCS MOSBOIO BHYT-
pimHBO{ HOro AWHAMIKH, B JESKUX BHUIAJKaX, YTBOPEHHIM Opu3epiB, i 3aBXKAH
TeHepalli€l0 BUIPOMIHIOBAHHS Yy 3BOPOTHBOMY 0 pPyXy HampsMKy. YucenbHO
MOKa3aHo, IO INBHJIKHA PyX JBOX TOTMOJOTIYHUX COJITOHIB TPU3BOJIUTEH JO
(opMyBaHHSI 3B’S3aHOTO COJITOHHOTO KOMIUIEKCY y cHcTeMi cuHyc-I'opmoH 3
JTACTIEPCIETO0.
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