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The asymptotic properties of the solution of quantum-mechanical three Coulomb
centers problem eZ;ZZ are studied. Within the framework of the perturbation the-

ory the asymptotic formulas for energies of eZ,ZZ system are obtained at large

separation L between interacting fragments. As the applications of obtained results
the leading term of the asymptotic of exchange interactions between hydrogen-like

molecular ion eZZ with nuclei of different elements are calculated. The total cross

sections of charge transfer of a hydrogen molecular ion H ; on the nuclei of lithium

at not very low impact velocities are calculated.

Introduction

In the present work we study the as-
ymptotic behaviour of discrete spectrum of
eZ,ZZ system (one electron and three fixed
nuclear charges: Z, and Z, =Z, =Z). This
system can serve as a model for collision
systems consisting of three ions with closed
electronic shells (two of them being identi-
cal) and one “active” bound electron. We
consider the Schroedinger equation for the
problem of electron motion in the field of
three Coulomb centres:
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where 7 is the radius-vector of the electron,
R;is the radius-vector of the i-th nucleus

(i=123), », =IF —Ei' is the distance from

the electron to /-th nucleus, E(Q) and

‘P(F;Q) are the electron energy and wave-
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function, respectively, that depend on three
coordinates Q, =L, Q,=R, O;=p,

Q:(L,R,/)’), the meaning of which is
shown in Fig.1.

Fig.1. Geometry of quasi-molecule eZ,ZZ and
used notation.

Asymptotic expressions for the potential
energy surfaces of eZ, ZZ system

In the limit L — o the solutions of
equation (1) are localized either near the nu-

cleus Z, or near the two identical charges
(ions), Z+Z . Thus, ¥, is the wave function
that corresponds to the case when system
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2,77
atomic ion eZ; and two identical charges,

is separated as a hydrogen-like

and Wj; corresponds to the case of infinitely
separated a hydrogen-like molecular ion
eZZ and a charge Z,. The energies E (Q) of
eZ,ZZ system in the limit L — o can be
classified in an analogous manner: E,(E,)
energies go over into the energy levels of
isolated atomic (molecular) ion eZ, (eZZ)
for asymptotically large L. We characterize
E,(Q) and W¥; by the set of (parabolic)
quantum numbers [ =[nn,m] which
describe the states of isolated hydrogen-like
ion ez,; for E,(0) and ¥, will be
characterizes by the set of (spheroidal)
quantum numbers I =[k,q,m’] which
describe the states of molecular ion eZZ.
The function ¥; we expand over the

Coulomb parabolic functions 1
Prinym (lu’ v, ) :
¥, = X Qrinym' (Rz Ry.0,.06, )x
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where
1
1 +|m|)! |2
fom(p)= W{%}—ﬂ—} (- p.|m|+ Lp)x

xexpl- pf2) pI"V? @
(I)() is the confluent hypergeometric

function of the first kind [2], nis the
orincipal  quantum  number, and
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p=nr{l+cosd) and v= r{1—cosd,) are
the parabolic The wave
function ¥y, (F ; Q) we represent as expansion

coordinates.

¥, (;7,- Q)= ¥ (5,77, 23 ,ﬁ,R)=

J mj
over the two-center wave functions ¢ jm; of

eZZ discrete spectrum

@m0 R)= N, T, (&0 R)x

exp(z’m j(o)

x%WWM—ﬁi—, )
where N Jm, is the normalization factor, m
1s the projection of angular momentum on
the axis R, and j designate all other

quantum numbers [3,4]. The coordinates £
77, used in Eq.(5), are defined by (see Fig.1)

£ =(\[L2 —RLcos B+ R*[4 +

+JI2 + RLcos p+ RP[4JR"",

ﬁ=(\[L2 —RLcosﬁ+R2/4—

—\/i2+RLcosﬁ+R2/4)R'l. )
The energies E; of the system eZ, +Z +Z2
(electron is predominantly localized in the
Q, -region; see Fig.1) in the first order of
perturbation theory are given by
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7y is the angle
between R, and R;. At sufficiently large
distances L between Z, eZZ , the

potential energy surfaces of eZZ +Z; quasi-

molecular system in the second order
approximation of perturbation theory are
given by the expression
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where coefficients AI.S.")(R) are given as
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f|’ Nij(R)=Nj(R)Nj(R), and

£;(R) are the energies of hydrogen-like

N=|m,-—m

molecular ion eZZ . (The subscript m; in the
notations for II jm; (§; R), S Jm; (77;R) and

N jm, has been omitted.) Formulae similar to

(8) and (9) for the specific case of Z; + H;
system have been derived in [5,6].

Exchange interaction of hydrogen-like
molecular ion with a nucleus, and charge-
exchange cross-sections

We consider the following charge-
exchange reaction:
eLZ A Z| el FZHZ (11)

at low collision velocities. The exchange

interaction ~ A(Q)  between adiabatic
electronic  states of  quasi-molecules
eZZ+Z, and eZ;+Z+Z is given by the
expression

AQ) = [dS(¥, Ve, -¥,V¥,). (12)

Using for ¥; and ¥, the expansions (2)

and (5), we obtain (to the leading order of
1/L)

Z3/2 2Z] Jay +1/2 _
Ap
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x —]—) ) e

n
Zl

X exp{—%(az + ((x 2;Zj} (13)
- 1

The coefficient 74(,6’) is related to the
normalisation constant of asymptotic wave

function of eZZ system; a, =+/—2E ”) (R),

X

Z,

1)

n
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Eg))(R) is the energy of molecular ion eZZ ,
and » is a principal quantum number of the
state described by W; wave function. The
potential energy surfaces of Z; + A5 quasi-
molecular system, with Z; =3 and at a

distance between the protons R =2, for the
first three o -states that correlate with the

Iso, 2so, 2po states of H; molecular

ion at infinite distances L, are shown in
Fig.2. Using Eq. (9) has performed the
calculations.

Fig. 2. Adiabatic energy surfaces of Z; + H
(Z, =3, R=2), calculated by using Eq. (9),
for the first three o -states that asymptotically
correlate with the lso, 250, 2po states of
H,".

Figure 3 shows the potential

surfaces EOOO(L,R,,B) and EOIO(L,R,,B) of

the system p+ p+Li*" calculated for R=2

by using Eq. (8).

energy

Fig. 3. Adiabatic potential energy surfaces
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Egoo(L.R,B) and E, (LR B) of the

+p+Li*" quasi-molecule.
ptp

As an application of above described
asymptotic method for determination of
eigenfunctions and eigenenergies of a three-
centre Coulomb system, as well as the
pertinent radial couplings (Eq.(13)), we have
calculated the cross section of charge
exchange reaction

Hi +Li*" > 2p+Li*t (14)
by using the standard MO close coupling
method, with radial coupling matrix
elements in the form of Eq. (13). In the semi-
classical version of this method, the electron
capture probability p,, (p) (transition from

the initial state “1” to a particular final state
“n”) is given by

Pa(p)=lan(+ )", (15)

where p is the impact parameter. The

coefficients a, satisfy the standard time-

dependent system of differential equations
(with the effects of electron translation
factors and rotational transitions omitted):

dal

j—=

H”CI] +H12612 +...+H1nan,

da
i 2

=H12611 +H22£12 +...+H2nan,

d
i-g—t’l = Hypay + Hypay + ...+ Hypa,, (16)

with the initial condition a j

diagonal matrix elements

(—00)251'1. The
Hjj, which

correspond to adiabatic energy levels of
eZyZZ system, are calculated by using Eqgs.
(8), (9), whereas the non-diagonal matrix
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Hy,

exchange interaction between initial and
final adiabatic electronic  states, are
calculated by using Eq. (13). The cross
section for the specific 1 — »n transition,

elements which correspond to the

o =27 [pu(p)pdp (17)

0

has been calculated within the straight-line

trajectory approximation, L(t)= v p2 +v2e?

for nuclear motion (v being the collision
velocity).

1,64
&’g 1,4+ ,;s’,'w"‘t ‘,i e S
g g T
o 12 :‘j::‘::w.w “"“*NL»»\M;::’“&:::
P /
& 1.0 b 2 _
._E. 0,8+ g// “‘“‘.w?: 3;:;8
' —e—B=n/8
g 0!6_ A E_ - D
8 04
7 0.4+
% 024
e
S 00 : ' ; t | |
00 02 04 05 08 10 12

Velocity (V, a.u.)

Fig. 4. Cross sections of reaction (14) for
different orientation angles of molecular axis

—

R relative to the projectile velocity vector

V:B=0, n/8,37/8.
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Fig. 5. Total cross sections of reaction (14)
averaged over the orientation angles of

molecular axis R relative to the projectile

velocity vector V.

The cross sections of reaction (14)
for different orientations of molecular axis
with respect to the vector of projectile
velocity are shown in Fig. 4, as function of
collision velocity. These cross sections
exhibit weak oscillations for collision
velocities above 0,4 a.u. The total cross
section, summed over the orientation angles
of axis R, is shown in Fig. 5. Remnants of
the oscillations in the collision velocity
region above 0,4 a.u. are still present in the
structure of the cross section.
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3AJIAYA TPHOX KYJIOHIBCHLKHX IIEHTPIB TA fi
3ACTOCYBAHHS B TEOPIi IOH-MOJIEKYJISIPHIX
3ITKHEHD
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'Yixropocexuit HanionansHuit yHiBepcuTeT, Yxropon, Ykpaina
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BuB4aloTbCsl aCHMATOTHYHI BJacTHBOCTI PO3B’si3KiB KBaHTOBOMEXaHiuHO! 3ajadi
TPbOX KYJIOHIBCBKHUX 1EHTPIB eZIZZ . B pamkax Teopii 36ypeHb OTpUMaHO

ACHMIITOTHYHI HOPMYNIH AiA eHepriii cnctemn €2, ZZ npw senukux sigcransx L

MK B3aemopitouuMmH ¢parMeHTamMH. B AKkocTi  3acTOCyBaHHA  OTpUMaHHX
pe3yNbTATIB PO3PAXOBAHC T'OJIOBHMH 4JieH acCHMNTOTHYHOTO pO3Knaly OOMiHHOI

B32EMOZII BOAHEBONOAIGHOIO MOJEKYIspHOTO ioHa €77 3 sApamMH  pi3HUX
XiMiyHuX  ememeHTiB. OOuMCNEHO MOBHI  MepepisH  MNepe3apaikd  ioHa

+ ..
MOJIEKYJIAPHOTO BORHIO Hz Ha Aapax aroMa JITi0 NpH He JYXKE MATux
IIBUAKOCTAX 31TKHEHHS.
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