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The expansions of the Green's function for the Simmons molecular potential (SMP)
over spheroidal functions are built. The solutions of a degenerate hypergeometric
equation are used as basis function system while expanding regular and frregular
model spheroidal functions into series. Rather simple three-term recurrence relations
are obtained for the coefficients of these expansions.

Introduetion

In the theory of electronic structure and
spectra of molecular systems Green's func-
tion for the two-centre potential ¥(F, R)
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plays fundamental role, similar to that of the
one-centre Coulomb Green's function in the
atomic structure theory. However. even for
the simplest model — a problem of two
purely Coulomb centres Z eZ, considered in
Ref. [1] no closed analytical expression for
the G.(,F;R) similar, e. g. to the well-
known Hostler and Pratt expression [2], has
been obtained. The expansions of the Green's
function G.(7,7'; R) over partial waves have
been constructed only in the separate case of
molecular hydrogen ion Hj [3], where the
recurrent scheme of coefficient determina-
tion, related to cumbersome calculations was
proposed.

More essential for the perturbation the-
ory problems, based on the usage of the
Green's function approach, is the extension
of methods, developed for the Z,eZ, prob-
lem, to more complicated multielectron dia-
tomic systems. In the modern theory of elec-
tron structure of complex molecules the self-
consistent field method and the effective po-
tential concept overcome these difficulties.

In our works the expansions of the
Green's function fer the two-centre potential
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model, suggested in Ref. [6] over spheroidal
functions, are built. While regular and ir-
regular model spheroidal functions (MSFs)
being expanded into series, the solutions @
and ¥ of a degenerate hypergeometric
equation [8], providing the required asymp-
totic behaviour of the MSFs at small inter-
centre distances ( R — (), are used as basis
functions.

Green's Function Expansions over
Sphercidal Functions

Without concentrating here upon the
possible versions of construction of the
model potentials, and bearing in mind dia-
tomic homonuclear systems with a single
optical electron, we shall describe the inter-
action of the valence electron with the mo-
lecular core by a non-local model potential
of the form [6]
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where r,, r, are the distances from the elec-
tron to the force centres 1 and 2, located at
the distance £ from each other; !f;; are the

operators of projection onto the subspace of
states with certain values of the orbital ¢ and
magnetic m quantum numbers, and Z is the
effective charge of each of the atomic (ionic)
fragments — the constituents of the fragments
of the two-centre system. The empirical pa-
rameters B_ (£, R} are chosen by the com-
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parison of the calculated lowest level (term) of variables in the Schroedinger equation in
£ of the valence electron with the given # prolate spheroidal coordinates &, n, ¢ [1]
and m with its experimental value. The po- which enables the exact calculation of terms
tential (2) is the generalization of the well- and electron wave functions.

known in atomic physics Simmons model Here we represent the Green's function
potential [9] to the molecular case and goes G, (7,7, R) in the form of an expansion over

over into it in the limit of the united atom
(R —0). The unique feature of the model
potential (2) is the possibility of separation

a complete orthonormalized system of oblate
angular spheroidal functions S'Fm,_,{p..r,i:] {1}
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By substituting the expansion (3) into equation (1), having been written in the prolate
spheroidal coordinates, and separating the angular variables 1 and ¢, we obtain a differential

equation for the radial part of the Green's function G, (£.£% E):
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=l L 3 S finity. Let us to introduce the new independ-
e 2 ER(EQ‘E} » a=2Z{=2E)", ent variables and new sought functions in

E R)z 1 (pz}Jr B {F R} R equation (4) according to the formulae
-3 mf art ¥ ¥ (il
denote the eigenvalues of the angular prob- 3 +1
lems, corresponding to the oblate spheroidal ﬁfﬂ—f{x:):['{lj] 1, {p.£),
functions S, {p.77} [1]. Thus, the function 2

G, (&.£5E) is the Green's function of a x, = p(g £1), )
one-dimensional radial motion and is con- {Zp S g bl | AL -c:t::n).

ventionally expressed by two linearly inde-

pendent solutions H{i] (p.&) and ﬂ{zl{p, £) Hereinafter the upper signs are related to
of the homogeneous part of equation (4). The ﬁf,‘;.*(xj and the lower ones — 1o f'[f,jﬁ(x_}. B
solution HEE,J, p.,r;:} 15 regular at & =1 and the transformation (5) homogeneous part of the
divergent at infinity, and [1%%/(p,&) is, con- equation (4) is reduced to two separate equations
trary, divergent at £ — 1 and regular at in- for f15)(x, )
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where the parameter v=v,, (E, R) is given
by = _%%J: +4B, (E0)+40(f+1).
When p tends to zero, both equations of (6)
go over into one T,R(x)=0 (0<x<w),
whose two independent solutions are the
functions R!"(x) and R'(x) expressed di-

rectly in terms of regular @ and irregular ¥
solutions of a degenerate hypergeometric
equation [8]:

Rilj{x) = va"(D(— a+v+12v+ 2,21:},
EMNx)=x"e W(-a+v+12v+22x). (7)

The above speculations suggest the regu-
lar T1%*)(x, ) and the irregular [1%*!(x, } solu-
tions of each of the equations (6) to be given
as the following infinite sums:

Zh‘*l(m A, )R, (x.),
nEi}{x J ZEE }(Pﬂ' Am( }R'H'P’
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here the expansion coefficients h_fﬂ and .E::‘*}

are to be determined. Having substituted
these expansions into the corresponding
equations (6) and having used the recurrent
relations (See Refs. [5, 13]) for the basis

functions R"(x) and R™(x), we obtain two
infinite three-term systems of linear equa-
tions for the coefficients k = .Frf( a,f!m),

"E:xt = Et {P|ﬂf Amf}:

+ pa hi* + (B, — 4, W F py p] =0,
s=012..,

Rt =0, &)

F pa i) + (B - 4, i+ py A% =0,
s=012...

A0 (10)
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S 2{{5‘+V}2 —a:z}{s+v +m)
(s+v)2s+2v-1)2s+2v +1)
B, =(s+vis+v+1)
Yo =2s+v+1)s+v+1-m),

(1)

_Hs+v-afstvim) B =p,
254+ 2v—1 : :
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The recurrent systems {9) ((10)) deter-
mine the coefficients A'*! [E{*}} within arbi-
trary factors, fixed by the conditions
i £) ﬂES+2V +2} =1 iz—p-vj;i:} S
i srivilea) | S :

(12)

The expression for radial Green's func-
tion G, (& &;E)with the account of the

Wronskian value (See Refs. [3, 7]) can now
be given by

&

?.L#

s g e, ).

&\ X, %,
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G &8 E)=

Limiting Values and Asymptotic
Expansions of the Two-Centre Green's
Function at Small Intercentre Distances

In many physical problems whose ex-
amples are considered in [1], the asymptotic
of the Green's function G,(F,7'; R) at small
values of the intercentre distance should be
known. Hence the necessity of the asymp-

totic expansions of §_,(p.n), ['*)(x,) and

[1%*(x, } functions over a small parameter p

Lils

at the fixed quantum numbers ¢ and m to be
constructed arises. We use an asymptotic

method, proposed by Abramov and
Slavyanov [13], to search for such expan-
sions.

We begin with the oblate angular spher-
oidal function S,,(p,n). The expansion for



Uzhhorod University Scientific Herald. Series Plgsissue 10. — 2001

normalized angular spheroidal functions can
be written in the form:

Surf {p! rf} - Nn_nl‘ [.p] Z d;iS‘FETQ‘rHJ [I?];
w= [ -0 2]
f—m=2k,

AL 0 if (14)
1 i b—m=2k+], k=012..

Here P"(n) are the associated Legendre

polynomials, N, {p)- normalization factor
and E[‘IT.LG] is the integer part of the real

number o . The expansion coefficients d;. .
Fulfill the three-term recurrent relations [1]:

2 Hzm& '2r:+ha6dln4 2.8 T lf?-iiqj _(f +2n+ fo +2n+1+ 5}_ PZ +

(15)
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R T Y204 2k -1 S (16)

We search for the separation consiam
}I,{’” and the expansion coefficients dj.., in
the form of asymptotic series over the pow-
ers of a small parameter p’:

A =314, p”
j=0
42 -p”"'Z[dz,,,§L. pY, d,=1.07

By substituting these expansions conse-
quently into each equation of the system
(15), starting from n=0, and equating the
coefficients at the equal powers of p’ to
zero, we obtain the recurrent relations to de-

termine the expansion coefficients [d;:lg 9y

and [4;],,
sponding to » =0, enables the [;% LJ values

. The chain of equations, corre-

coef-
and

to be expressed in terms of [aﬂMJ“ -
ficients. Some coefficients [R,;L ;

1d_fl_=:+a ]2;,,4 are given below:
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In order to save space we present here
the few coefficients of the expansion (17)
only, but in the numerical calculation for
ZeZ systems we keep up to ten coefficients
en each expansion. We have checked the ap-
plicability of our approximate results with
numerical solutions obtained for ZeZ sys-
tems in [4]. Some results are represented in
Tables 1 and 2. For the sake of convenience
while presenting the results, the values of
separation constant are recalculated in the
notation system chosen in Ref. [4]. In Table
2 the values of the coefficients (See Eq. (14))
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calculated using asymptotic expansion (17)
are compared with the numerical solution for

Table 1. Separation constant A'E;’} - p?

function, A" ~p? = A, x10".

them from [4]. The normalization for dj,.;
coefficients, accepted in [4], is used here.

of the angular equation for the oblate spheroidal

f This work ! Ref, [4 This work Ref. [4]

: P Ay ] Aua n l A L] Ay n |
T e R ] -3.34 B 1.99400 0 199400 [0

3 F00 ] : | 194594 | 0 | s =
lﬂ.ﬁ -1.21942 -1 -1.2194 -1 178311 | 0 1.78311 0
0.9 -2.79963 -1 - - 1.50953 0 = -
(15| -829869 | -1 -8.2987 -1 ? 6.16041 -1 6.1604 | -1
“E_‘”-LSW“T -1.59449 E 0 ’ -5.05240 -f}miﬁfﬁﬁiTMT

Table 2. Expansion coefficients

arm!

Ia+d

lated for the ground state (£ =0, m=0), d™ =D _x10".

for the oblate angular spheroidal function calcu-

i This woric Ref. [4] Thiswork | Ref [4] This work Ref. [4] |
._Eﬁ.a_,.Dﬂ ___ml D, n D, H D, n D, Hl D, n |
0.1 | 1.0006 | 0| 1.0006 | 0| 1.1121 |-3| 1.1121 |-3| 1.9067 | -7 | 1.9066 | -7
03] 1005 [6] - |-| 1.0079 |-2] - - | 15562 | -5 =
0.6 | 1.0205 | 0| 1,0205 | 0] 41281 | 3| 41383 | -3| 2.5558 | -4 | 3.5555 | 4 |
09 )W“ﬁ" - -] 9.6662 -2} : - 13523 |3 s S
L LR O 0Re 0 ST u s S hRI0E . ol 45520 A8
(1.5 | 1.1483 [0] 1.1484 | 0] 3.0571 |-1| 3.0573 t-l 1.2080 "“-T“T]""@Tﬁmf'-'i"

The same approach can be applied to the
studies of the asymptotic behaviour of the
regular and irregular radial MSFs at small
values of the p parameter. The analytic rep-

resentation

for the coefficients of radial

MSFs would be represented in our follow
publications.
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Concluding, we should note that an ap-
proach to solving the perturbation-theory
nonlinear equations, related to the Timan-
Schwarz method application, has been also
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discussed in the literature (See e. g. [10-12]). Acknowledgments
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[Mobyaosanoe postnaa ana gyurnii [piva monexynapuoro noTeruiany Cafyonca 3a
cpepoinanesumy  dyskuiamun, [lpr poswnaganni perynapHux | HeperymApHHX
MOASMLHHX  chepoifaibhix  ¢ywHEuifi B8 paow B AkocTi  Ga3zMCHMX  CHMCTEM
BHEODHCTAHO POIB AIKH  BHPOLHCHODO  rinepreoMerpuudoro  piedanxg.  [na
koedittieHTie UMK po3KNANIE OTPHMAHO OOCHTE FPOCTI TPHYNEHHI pexypeHTHi
CIiBBiIHOLIEHHE.
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