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The shifts and widths of the Stark resonances for hydrogen atom in a uniform elec-
tric field are calculated within the modified operator perturbation theory. We have
studied the influence of the electric potential model function choice in the operator
perturbation theory on the values of the resonance energies and widths. It is shown
that the use of an asymptotically correct, new form for the electric potential model
function in the operator perturbation theory calculation scheme leads to a quite rea-
sonable agreement of theory with experiment and does not significantly change the
final results for resonance characteristics. The comparison of the calculated Stark
resonance widths and shifts with other theoretical and experimental data is pre-

sented.

Calculation of characteristics of atom in
a strong electric field remains very important
problem of modern atorric physics [1-21].
As it is well known, external electric field
shifts and broadens the bound state atomic
levels. The standard quantum-mechanical
approach  relates complex eigenenergies
(EE) E=E, + 0.5iG and complex eigen-
functions (EF) to the shape resonances.
The calculation difficulties in the standard
quantum-mechanical approach are well
known. The WKB approximation overcomes
these difficulties for the states, lying far from
the "new continuum”" boundary and, as a
rule, is applied in the case of relatively weak
electric field. The same regards the wide-
spread asymptotic phase method [2, 3],
based on the Breit-Wigner parameterisation
for the phase shift dependence on scattering
energy. Some modifications of the WKB
method are introduced in [9, 19, 20}. Quite
different calculation procedures are used in
the Borel summation of the divergent pertur-
bation theory (PT) series [4] and in the nu-
merical solution of the differential equations
following from the expansion of the wave-
function over a finite basis [1, 17, 21]. In [7]
a consistent uniform quantum-mechanical
approach to the non-stationary state prob-
lems solution including the Stark effect and
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scattering problems has been developed.
The essence of the method is the inclusion of
the well known method of "distorted waves
approximation" in the framework of the for-
mally exact PT. The zeroth-order Hamilto-
nian Hy of this PT corresponds only to sta-
tionary bound and scattering states. To
overcome formal difficulties, the zeroth-
order Hamiltonian was defined by a set of
orthogonal EF and EE without specifying the
explicit form of the corresponding zeroth-
order potential. In the case of the optimal
zeroth-order spectrum , the PT smallness pa-
rameter is of the order of G/E, where G and
E are the field width and bound energy of
the state level. One can see that G/E <l1/n
even in the vicinity of the "new continuum"
boundary (n is the principal quantum num-
ber). This method is called the operator PT
(OPT) method [7]. It is very important that
the Hamiltonian H is defined so that it coin-
cides with the total Hamiltonian A at € = 0.
(e is the electric field strength). Note that
perturbation in OPT [7] does not coincide
with the electric field potential though they
disappear simultaneously. The present paper
is devoted to the calculation of the Stark
resonance energies and widths for hydrogen
atom in a uniform electric field on the basis
of OPT method and studying the problem of
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influence of the corresponding electric po-
tential model function choice on the values
of energies and widths. We will show that
the use of an asymptotically correct, new
form for the electric potential model function
results in a quite reasonable agreement of
theory with experiment and does not signifi-
cantly change the final results for the reso-
nance shifts and widths.

As usually, the Schrodinger equation for
the electron function with taking into ac-
count the uniform electric field and the field
of the nucleus (Coulomb units are used: 1
unit is #* /Ze* m; for energy 1 unit is mZ? ¢*
/B?) is given by (Coulomb units are used: a
unit of #*/Ze* m and a unit of mZ* &* /n* for

energy)
[(1-NZy/r+ez-050-E]y=0, (1)

where £ is the electron energy, Z — the nu-
cleus charge, N — the number of electrons
in atomic core. Here we only deal with the
hydrogen atom, ie. Z=1, N=0. After the
separation of variables equation (1) in para-
bolic coordinates is transformed into a sys-
tem of two equations for the functions f g:

, Im+l
S +—'—*t S HO05E +

+HBi-NIZ) [ -025€Dt]1f=0  (2)
| ml+1

g”+ ——t—— g’+ [0,5E+

+B/t+ 025€0) t]1g=0 3)

coupled through the constraint on the sepa-
ration constants: f§,+/= 1. For the uniform
electric field £(r) = & The potential energy
in equation (4) has the barrier. Two turning
points for the classical motion along the 7
axis, #; and #,, at a given energy E are the
solutions of the quadratic equation (£ =
B E = Ep). In [7] the uniform electric field
£ in (3) and (4) was substituted by a
model function €(t) with a parameter 1
(t = 1.5 ;). Here we use another function,
which satisfies the required asymptotic
conditions [7]:

g(t) ; €| (t T)PT?H , ®

The final results do not depend on the
parameter 1 .To calculate the width G of the
specific quasi-stationary state in the lowest
PT order one should know two zeroth-order
EF of Hy: the bound state function Wgy (g, v,
@) and the scattering state function Wg;s (g, 1,
¢) with the same EE. First, one has to deter-
mine the EE of the expected bound state. It is
the well known problem of state quantifica-
tion in the case of the penetrable barrier.
Following Ref. [7], we solve the system of
(2, 3) with the total Hamiltonian A under
the conditions:

f)—>0att=>0 and ox(B, £)/0E=0 (5)
with
B, B)= lim [2()+{g®/ k2] m|+1.

These two conditions quantify the bound
energy E, the separation constant ;. The
further procedure for this two-dimensional
eigenvalue problem results in solving the
system of ordinary differential equations (2,
3) with probe pairs of E, §;. The bound state
EE, eigenvalue B; and EF for the zeroth-
order Hamiltonian Hy; coincide with those
for the total Hamiltonian H at £ = 0, where
all the states can be classified due to the
quantum numbers: #, n; , #2 , m (principal,
parabolic, azimuthal) that are related to E,
B1, m by the well known expressions. We
preserve the », n; ,m states classification in
the €20 case . The scattering state functions
must be orthogonal to the above defined
bound state function and to each other. Ac-
cording to the OPT ideology [7], the fol-
lowing form of gg:s :is possible:

ges() = g1 (1) - 22" (D) (6)

with fgrs , and g1(¢) satisfying the differential
equations (2) and (3). The function g»(t) sat-
isfies the non-homogeneous differential
equation, which differs from (3) only by the
right hand term, disappearing at ¢ = c. The
coefficient z,’ ensures the orthogonality con-
dition and can be defined as
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The imaginary part of the state energy in
the lowest PT order is

Im £ = G/2 = <Wgp |HWgs >

with the total Hamiltonian H. The state
functions Wg, and \Wgs are assumed to be

normalized to unity and by the &(k -&)-
condition , respectively. The whole calcula-
tion procedure at known resonance energy E
and separation parameter # has been re-
duced to the solution of one system of the
ordinary differential equations.

Table 1. The energies and widths of Stark resonances of the hydrogen atom:
Notation: a — [7]; b—[2]; ¢ — [13]; d —[1]; e — [21]; £—[19]; g — the present paper.

(nn;nym) £ Method £ (at.units) G (at.units)
2010 0.005 G 0.1425 0.101x107
0.005 A 0.1426 0.102x107
C 0.1426 0.106x107
E 0.1426 0.106x107
2010 0.010 g 0.1660 0.107x10™
a 0.1661 0.108x10™!
c 0.1661 0.109x10°!
d 0.1661 0.109x10™}
e 0.1661 0.109x 10"
2001 0.005 g 0.1270 0.266x10™
A 0.1272 0.267x10
C 0.1272 0.262x10™
E 0.1272 0.262x10
2001 0.010 G 0.1342 0.636x107
A 0.1345 0.637x10*
C 0.1345 0.628x10
e 0.1345 0.628x1072
2010 1.8x10™ g 0.2061 0.277x107
A 0.2062 0.278x107
b 0.2062 0.228x107
d 0.2062 0.228x107
f 0.2062 0.222x107

The calculation results for some states
of the hydrogen atom are presented in Ta-
ble 1. For comparison we have shown the
similar data, obtained within another ap-
proaches: the WXKB-approximation, the
summation of divergent PT series, the nu-
merical solution of the differential equa-
tions, standard OPT [1-3, 7, 19, 21]. One
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can see that there is a reasonable agreement
between theory and experiment. It is im-
portant to note that the use of a new, as-
ymptotically correct form for the electric
potential model function within the OPT
method does not significantly change the
final values of the Stark resonance energies
and widths.
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ATOM BOJHIO B CWJIBHOMY OJHOPITHOMY
EJEKTPUYHOMY ITOJI: MOJANPIKOBAHUM
METOJ TEOPII 35YPEHb
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' Onecexa nepxcaBHa akanemis 3B’ 2Ky, alc 116, Oneca-9, 65009
2 Opecekuit HaioHATBHUHN yHiBepcuTeT iM. [.I.Meunukosa, Oneca

Ha ocnoBi MonudikoBaHoi oneparopHoi Teopil 36ypeHb po3paxoBaHO eHepril Ta
IIMPWHY  IUTAPKIBCBKMX PE3OHAHCIB JUI4  aToMa BOAHIO B OJHODIZHOMY
enextpuaHoMy normi. JocnmifkeHo BB BubGopy (opMu MozenbHOT QyHKLIT mns
eNIeKTPUYHOTO NOTEHIaTy B OHEpaTopHilt Teopil 36ypeHs Ha 3HAYEHHS eHeprift Ta
IIMPUH pe3oHanciB. TTokazaHo, MO0 BUKOPUCTAHHS aCUMITOTHYHO KOPEKTHOI, HOBOT
Gopmu MozenbHO! (yHKUIl /Ul eTEKTPUUHOTO MOTEHUiany B omepaTopHii Teopii
30ypeHs jgae noOpe ysromxeHHa Teopii 3 excnepumedToM { He 3MiHIOE CYTTEBO
OCTaTOYHMX PE3yNBTaTiB MIA XapakTepHCTUK pe3oHaHCIB. HaBeldeHO HOpiBHAHHA
3HAYeHb PO3PaX0BAaHUX 3CYBIiB Ta IIMPUH INTAPKIBCHKUX DPE3OHAHCIB 3 iHIMMMM
TEOPETUYHUMH T4 €KCIIEPUMEHTANbHUMY TaHUMH.
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