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RYDBERG STATES OF DIATOMIC MOLECULES:
AB INITIO PERTURBATION THEORY CALCULATION
OF ALKALI DIMERS
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We have carried out the calculation of the potential curves for the ground and ex-
cited states , spectroscopic characteristics for the whole number of the diatomic al-
kali dimers A2 (A=Li, Na, K, Cs, Fr) on the basis of the formally exact Rayleigh-
Schrédinger perturbation theory with ab initio two-center approximation. The high-
order contributions (due to polarization interaction between above-core" valence
quasi-electrons through polarizable core and mutual screening of "above-core" va-
lence quasi-electrons) are accounted for effectively with the use of a new ab initio
functionals. The are presented the calculated values of the spectroscopic constants

(excitation energy T.; rotational and vibrational constants B,,@,) for Rydberg

states n‘zg (n=4-6) of Na, dimer are presented.

The calculation of spectroscopic char-
acteristics for diatomic molecules is one of
the urgent problems of modern molecular
spectroscopy. It is related to the importance
of these data for a number of applications,
including laser spectroscopy, chemical
physics, creation of the laser sources etc [1-
15]. In this paper we study the potential
curves for the ground and excited states,
spectroscopic characteristics for the whole
number of the diatomic alkali dimers A2
(A=Li, Na, K, Cs, Fr). The corresponding
calculation is carried out on the basis of the
perturbation theory with ab initio two-center
approximation [2]. We also present data on
the spectroscopic constants (excitation en-
ergy T,; rotational and vibrational constants
B,,w,) for Rydberg states n'Z}(n=4-6) of
Na, dimer.

Diatomic alkali molecules M; (M =Li,
Na, K, Rb, Cs) can be treated as systems
with two quasi-particles, moving in the field
of the inert gases core M" - M" . The ground
state of the system is the state with two
quasi-particles above the core, having the
following form:
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where ®q is the core state, C — a coefficient,
taking into account angular symmetry. The
electron Hamiltonian is as follows:
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where €; are one-particle energies,
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Here V(7 ) is the core potential. It can be
represented as

Vie =V (1,6,,0)+V,, (,6,,0,) - (2)

We use the basis, generated by the
Hamiltonian of the quantum-mechanical
problem for two centers of, as the zeroth or-
der eigenfunction basis. The calculation of
the considered system consisted of two parts:
1) the construction of the zeroth-order ab
initio model approximation; 2) calculation of
the different-order corrections for the pertur-
bation theory with the effective account of
the exchange-correlation effects and the ef-
fects of the higher-order perturbation theory.
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We use here the ab initio procedure, pro-
posed in [2] and based on the minimization
of the gauge-dependent correlation contribu-
tion into the imaginary part of the electron
energy of the molecule. The perturbation op-
erator has the following form:

Hy =YYl -] @

where 3, i, j are the summation indices re-
garding the nuclei and electrons. In [2] the
perturbation theory series for the secular op-
erator matrix is build and the method of
summation for this matrix diagrams is con-
sidered. The matrix element of the secular
operator M has the following form:

M =MD +MJ +..+ M),
where i is the full number of the quasi-
particles, M” — the vacuum diagrams contri-
bution (without end lines); M — those for
the one-particle diagrams (one pair of the
end lines), M@ —thoxe for the two-quasi-
particle diagrams (two pairs of the lines) etc.
In the first-order perturbation theory it is
necessary to calculate only the contribution
of the two-quasi-particle diagrams which ac-
count for the inter-particle Coulomb interac-
tion. This correction is equal to the energy of
the inter-particle interaction AE® and ex-
pressed through the matrix elements of con-
ventional type over the zeroth-order wave
functions. For the operator 7;' , as usually,
the standard expansion over the Legendre
polynomials of the first and second kind and
spherical harmonics is used. In the theory of
multielectron systems the correlation is usu-
ally taken into account by the superposition
of the additional configurations, i.e. increas-
ing of the secular matrix. These configura-
tions can be divided into two groups: (1) the
states with electron excitation from the core;
their superposition takes into account the
polarizational interaction with each other
(they are described by the second-order po-
larization diagrams); (2) the states corre-
sponding to the virtual excitation the external
quasi-particles; the number of these quasi-
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particles is not changed and the superposi-
tion of these states describes the effect of the
mutual screening of particles by each other
(the second-order screening diagrams).
These two types of states give the correction
of the second-order perturbation theory:

+AE®

AE® = AE®) + AE®.

The effective method for the account of
both the first- and the second-type states
without the increase of the secular matrix
size is proposed in [2, 10]. It is based on the
addition of the polarization operator which
describes the polarization interaction of ex-
ternal quasi-particles through the polarizable
core, into expression for the operator of the
Coulomb inter-particle interaction. The ac-
count of the screening of the external quasi-
particles can be carried out by means of the
procedure, described in [10]. It enables one
to take into account the screening type dia-
grams in all orders of the perturbation theory
and improves the perturbation theory series
convergence. The details of the numeric pro-
cedure are described in {2, 10, 12].

In Table 1 the results of calculation for
the dissociation energies for a number of al-
kali dimers are presented. For comparison
we give also the experimental data and re-
sults of other calculations: with different ver-
sions of the pseudopotential method (Gauss,
Phillips-Kleynman, Gell-Mann potentials)
and wave functions in the form of Gauss-,
Heitler-London-type with Slater orbitals,
natural orbitals, within the density-functional
approach, in the multi-configuration ap-
proximation [3-15]. One can see a quite ac-
ceptable agreement between our numeric
data and the available experimental results.
The most principal moment of the present
calculation is an accurate ab initio account of
the effect of polarization interaction between
the external quasi-particles through the po-
larizable core and effect of the mutual
screening of these particles. Such procedure
provides a reasonable agreement between the
experiment and theory.
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Table 1. The dissociation energies (eV) for RbM alkali dimers (M=Li, Na, K, Rb, Cs), calculated in the present pa-
per, experimental data and results of calculations within other methods: a — experimental data; b — Gauss pseudo-
potential and model wave functions; ¢ — the Gell-Mann pseudopotential and Gauss model wave function; d — the
Gell-Mann pseudopotential and Heitler-London ansatz with Slater orbitals; e — Hartree-Fock potential + exact Phil-
lips-Kleynman pseudopotential and Heitler-London ansatz with the Slater orbitals and account of the core polariza-
tion by means of effective potential; f — model pseudopotential and 13-configurational wave function; g — model
potential and configurational interaction approximation with the use of approximate natural orbitals; Hi- the pres-
ent paper; H2 — perturbation theory with the zeroth approximation of the empirical model by Glushkov; k —

semiempirical perturbation theory (with fitting D), by experiment); | — local density approximation in the density-
functional theory [1-15];

M(2) a b c d e f g Hl | H2 k 1
RbLi 0.66 | 0.63

NaNa 0.74 | 1.33 | 0.25 | 0.23 | 0.23 0.59 1074 1 0.74 | 0.71 | 0.75
RbNa 0.58 | 0.58 | 0.58 0.58 | 0.57

RbK - 0.52 | 0.51

Rb 0.49 | 0.49 | 0.02 0.48 | 0.46

RbCs - 0.45 | 0.42

Table 2. Spectroscopic constants ( T, — the excitation energy ,100 em’; Be,afe— rotational and vibrational con-

stants, cm™) for the Rydberg states nlzg (n =4-6) for Na, , calculated in the present paper and on the basis of

other methods compared with the experimental data [12, 14]:
a— experimental data ; b — Hartree-Fock ab initio pseudopotential + core polarization];
¢ — empirical pseudopotential + core polarization; d — the present paper [1-15]

+ Lyl + + + + + + +
4'zr15'E, 16'Ty 4z |5'z 6'z 4'zy |5z |6's)
A |Te 1283,31317,71325,6|B, |0.0899 10,114 0,106 |, |108,7]109,4 }123,7
B 285 (319 |327 0,0838 10,107 (0,101 107 {110 119
C 286 {319 (327 0,088 0,110 {0,110 105 {113 123
D 284 |318 |324 0,088 0,11 0,104 107 1109 121
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PIABEPI'IBCBKI CTAHM IBOXATOMHHUX
MOJIEKYJI: PO3PAXYHOK JYKHUX JTUMEPIB HA
OCHOBI TEOPII 35YPEHD 3 IEPIINX ITPUHIINIIIB

B.I1.Ko3/10BCcHKA

Omnecpkuii rigpomereoponoriunuit inctutyr, a/c 108, Oneca-9, 65009

TIpoBeneHo po3paxyHKH NOTEHLIaNBbHYX KPUBUX JUI1 OCHOBHOrO Ta 30Y/UKEHHX
CTaHiB, CMNEKTPOCKONMIYHMUX XapaKTEPUCTUK NBOXaTOMHHUX JYXHWX IuUMEpiB A,
(A=Li, Na, K, Cs, Fr) Ha ocnoBl ¢dopmansHo TouHOI Teopii 36ypeub Penes-
Ulpeninrepa 3 1BOLEHTPOBUM HAOJIMKEHHAM 3 NEPIUUX NPUHLVIIB. BHECKY BHIIHX
MOPSAKIB (3aBAAKM MONApM3ALiiHIA B3aeMOil BaJEHTHHMX KBa3ieeKTPOHIB Kpizb
3MATHUI MOMAPU3YBATHCA OCTOB Ta B3a€MHOMY €KpaHyBaHHIO HANOCTOBHUX Ba-
JICHTHHX KBa3ieJeKTpOHiB) e(eKTHBHO BpaxOBaHO 3 BUKOPHCTaHHAM HOBUX
GyHKIIOHANIB 3 NeplIMX NPUHUUIIB. [IpoBeNeHO pO3paxyHOK CHEKTPOCKOIMYHMX

cranux (7, — edeprid 30ymKeHHS; Be,we-*OGCpTZUILHa Ta KOJMWBHA CTai) As

. o )
pinOeproBux craHis % E; , n=4-6) pumepa HaTpilo.
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