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Analytical quasiclassical solutions of the Dirac equation with an axially symmetrical
potential, which does not permit complete separation of variables, are obtained. The
two-center wave function of the Dirac electron is constructed. The first two terms of
the asymptotic behavior of the exchange splitting of the potential curves are caleu-
lated. Spin-flipping effect is taken into account, The obtained results are compared

with similar nonrelativistic results,
Introduction

The quantum-mechanical problem of the
motion of an electron in a field of two fixed
nuclei with charges Z, and Z, placed at a
distance R from each other (the so-called
ZeZ, problem) has been thoroughly studied
in the framework of the Schréedinger equa-
tion since the late 1920s. Status of the prob-
lem and references on the subject up to 1976
can be found in [1]. The intensive studies of
this problem during the last twenty vears
were stimulated not only by the availability
of powerful computers and the successes
achieved with asymptotic methods in solving
ordinary differential equations, but also by
the requirements of mesomolecular physics
(2, 3] and the theory of ion-atom collisions
[4]. New results were obtained both for the
problem of the hydrogen molecular 1on H

(see, for instance, [5] and references therein)
and for the problem of two centers with
strongly differing charges [6-8]. At the same
time, perturbative estimations were made for
relativistic effects in the two-center problem
[#]. This problem was also considered in
[10-13] for the Dirac equation within various
approximations (the Galerkin method, di-
agonalization, variational method, etc.) due
to the possibility of experimental observation
of the spontaneous creation of the positron in
a quasi-atomic supercritical field formed by
two approaching heavy ions with a total
atomic number Z, + Z, >173.
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It should be noted that within these
problems, at many world laboratories [14,
15] equipped with heavy-ion accelerators,
studies to verify the fundamental aspects of
quantum electrodynamics are being carried
out in superstrong fields whose sources are
the nuclei of heavy colliding elements. Note
also that the problem of taking relativistic
effects into account arises in a number of
traditional problems of the theory of ion-
atom collisions. Thus, we are at the threshold
of investigating phenomena induced by slow,
highly charged ions. Krypton and xenon nu-
clei completely devoid of electrons were
obtained previously in [16]. Quite recently,
communications [15] appeared from a group
of physicists working at the ion accelerator
at the Lawrence Laboratory (Berkeley,
USA), saying that they had obtained and de-

tected H- and He-like uranium ions (U™

and U™ ) with energies lower than 100 eV
per unit charge. The still-unstudied interac-
tion of such ions with matter should be es-
scntially quasi-molecular and its consistent
theory should be based on relativistic equa-
tions. The next step is to investigate multi-
electron processes and reactions with rear-
rangement {charge exchange, ionization, and
50 on) in the collisions of highly charged
ions with atoms and molecules, as well as
the properties of the transuranium elements
by means of forming superheavy quasi-
molecules and processes in the electron
shells of fissionable nuclei. All of this, in
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gssence, represents new promising fields for
application of the relativistic two-center
prohlem,

The difficulty in considerating the prob-
lem consists of the fact that the Dirac equa-
tion with the potential of two Coulomb cen-
ters does not permit a complete separation of
variables in any orthogonal system of coor-
dinates and, thus, one has to deal with partial
differential equations. As a suitable method
for calculating the wave functions and all
other quantities required in the problem of
the interaction of two heavy ions, we pro-
pose to employ the WKB approach. This ap-
proach allows us to obtain analytic solutions,
but it is limited by asymptotically large in-
ternuclear distances K. These distances
should be so large that the quantum penetra-
bility of the potential barrier separating
atomic particles is much smaller than unity.
A great number of problems can be pointed
out (see, for instance, [17-19]), whose solu-
tion depends on that region of internuclear
distance. We stress, however, that analytic
expressions derived for the asymptotic be-
havior of various splittings and shifts of the
potential curves can sometimes be used in
the region of internuclear distances that are
smaller than those given by the formal crite-
ria of applicability of the asymptotic expan-
sions. Qualitatively, this can be explained by
the fact that asymptotic solutions of the two-
center problem retain the basic analytic
properties of the exact solution [1] rather
well, even the first term of the wave function
expansion in powers of R™', up to suffi-
ciently small R.

The paper is organized as follows. In the
first section we solve the Dirac equation with
an axially symmetrical potential by the WKB
method. In the second section we construct
the two-center wave function of the Dirac
¢lectron for a system of an arbitrary
ion+atom (lon). Using this function, in the
third section we compute the first two terms
of the potential curve splitting in the relativ-
istic two-center problem for the general non-
resonance case. In the last section we discuss
and compare obtained results with the data
of similar nonrelativistic approximations.
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Axially symmetrical problem

Let us consider an axially symmetrical
problem, when two classically allowed re-
gions are separated by a potential barrier.
The examples of the application of such
problem are an atom in an uniform electric
field, the two-center problem, and so on. Let
us find the wave function in the below-
barrier region. In this case, the wave function
is localized in the vicinity of the most prob-
able tunneling way, that is the potential
symmetry axis z.

For the bispinor

Y= [gj {1
i'?
the Dirac equation is of the form
cGpé =(E-V+c' ),
(2}

copn =(E-V-c*)¢,

Inserting first equation of the system (2) into
second one and using substitution

E=)"o,
BE = E- Pl o
we obtain the second-order equation
AD+k'D=0,
k: = - [{E—V)z —c*]—

e
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Since the potential is axially symmetrical,
we seck a solution to this equation in the
cylinderic system of coordinates of the form

|

Substituting (5) into (4) gives the matrix
equation

reomlle- v

Fy(z, p)expli(m +1/2)p])"



Uzhhorod University Scientific Herald. Series Plegsissue 8. Part 2. — 2000

(A+9)F =(h7q" +y)F.

o
][c E-vy]”

1 (era av 8|0 —1]
“W\dpa eapll 0)
[am—uz T ]
Fis s
bm-],-'l -2

S v A 3wy
HFfZJP,f:#—z [‘” }

pép 2 # B
u
'& l-|| e s -
(&) ol

Let us represent the solution of Eq. (6)
in the form

F=pexpt’S), =Y We®. (7
re=ll

Inserting (7) into (6) and equating to
zero the coefficient of each power of A, we
obiain the system

(Vsf -¢*p" =0, (8.1)

{f-" S)I ~g* " + 2VsV '™ + Mﬁm} + 5 q.:?[m =0
- (8.2)

[ﬁg]z }pi"*ﬂ + 295V 4. M@‘ b4 *(8.3)

ﬂ%wn + A + Bp® _ g —

n=0,1,2,...

Let us find the wave function in the below-
barrier region. In this case, the wave function is
localized in the vicinity of the most probable
tunneling way, that is the potential symmetry
axis z. Therefore, we seek the solutions of
system (8) in the form of the expansion over
small coordinate o . From Eq. (8.1) we obtain

(¥s) =4,
(0= (2)+ 0. ()p™ ©)

k=l
1 #%4%(z,0)
Rt

q{f{z] = q:{i'ﬂ)z 0, =

Substituting the solution in the form

z,p)=2.8,()p" (10
n=0
into Eq. (9) and equating to zero the coeffi-
cient of each power of o, we obtain a sys-

tem of first-order equation. Its solutions are
expressed by

Sy == [qudz + const (11.1)
_‘?n{z} 1 g, o 3}

It [zqn() az)J s

q;. o ; :

S, = hq{ % lsiy? Qz]dz+mns.r},(11.3)
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We seck the solutions of Eq. (8.2), (8.3}
of the form

3

m - Z‘F[n} Z}p” |
s 1k g (13)
p Zmi’:’{-’f}ﬂ'
ki)

Substituting (13) into respective equa-
tions and equating to zero the coefficient of
each power of p, we obtain the system of
ordinary first-order differential equations,
which are soluble. The solutions are ex-
pressed by integrals. The lower component
n of ¥ is obtained from the upper one £ by

0"z, p)=

operation § —————>17].

Two-center wave function

Let us now find the wave function of the
Dirac electron in the field of two fixed nuclei
with charges Z, and Z, placed at a large
distance R from each other. Since in the be-
low-barrier region the electron is placed far
from each nucleus, we consider that the po-

tential 15 Coulomb:
5— i. : (14)
R

When atoms 1 and 2 are different, the ei-
genvalues (potential curves) FE(R) of the
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two-center problem dependent on the internu-
clear distance R as a parameter, are divided
into two classes: £, ~ and £, — potential
curves that, for R — oo, transform into the
energy levels of isolated atoms 1 and 2, re-
spectively. The energy E,(R) in the first ap-
proximation of perturbation theory is equal to

where £, is the energy of a nonperturbed iso-
lated state of atom 1. We search for solution 1o
the Dirac equation with potential (14) under
the boundary condition ¥, ——"¥,, which
means that when the electron approaches atom
1. the two-center function ¥, tends to the un-
perturbed atomic wave function ‘¥, Using Eq.
{14}, (15), we obtain the expression for the

EJ(RJ:El_ZzJ'{R+21¢'1IIIE2+ » 413} functions
3 -2 5 o
Sy =-A,z— zi + jé"z % 'Inz—gfz} [I+£’ zz"']i’n[f—i], (16.1)
22z 20R(R-z) A } e IR R
qy [, ¢ Z, H B A E,, Ty
se-tlniBaty) el s Ao
= m- 12} 3 :
:| P40 + ol & 1
{K o ] ["“’L’*[?) *”’“"")J o B 2QR-2) k(D)
S e Uh(ay=— » (17)
a R A 2 4, (R=-z) 24,z
X2 —p’”'?”] [I+L§*[£} +U;‘{z}}
. O z

where Kj,.L;,. @}, are defined constants,
+{-) corresponds to the component £(#7). By
the same way we obtain the wave function
¥, corresponding to the potential curves £, .

Exchange splitting of adiabatic
potential curves

For caleulating the exchange splitting of
terms we have obtained the representation
through the integral over the surface S con-

ditionally separating the domains, where the
electron is in initial ¥, and final ¥, states
[21]:

AE = 2ic [dS(¥;a¥%,). (18)
5

Calculating integral (18) by the station-
ary phase methed, we arrive at expression
for the first two terms of the asymptotic be-
havior of AE(R):

L ”gxp{_ﬁ("f*‘“’*]-E(ﬁfu%z*}}[;*—] (19)
.r|m| I,zy(,l TE) B ity o 2 2\ A A,
(Ui 1} +|ﬂf|l’
B m=m, =m,, K= ,+1{2), (20
=\ Gy ll¥ =y o
L v _ﬂm -1 }9 |m|+f"';2 E,Z,+E,ZI _fozz%t.l +$;'zr‘§2_£_ 2 (21)
A kA ]ml ;I,f;g 2 A A 24, 24, 44 44
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Discussion

In this work we have obtained the ana-
lytical quasi-classical solutions of the Dirac
equation with an axially symmetrical po-
tential, which does not permit a complete
separation of variables. Our method allows
to take into account the spin-orbit and spin-
spin interactions. We have obtained the
relativistic two-center wave function and
calculated the exchange splitting of poten-
tial curves, which expressed through the
known characteristics of disconnected at-

oms: charges of atomic cores Z, and Z,.
asymptotic coefficients 4,, A4,, binding en-
ergies ’111.1 fz and quantum numbers of the

electron in the considered states of atoms
(ions). First the spin-flipping effect is taken
into account. Qur results and analogous
nonrelativistic results of the exchange split-
ting show (Table 1) that the role of relativ-
istic effects increases with increasing
charges Z,, Z, and the relative contribution
of relativistic effects amounts to about 50%,
evenat Z, = Z, =48.

Table 1. Results of the calculation of the exchange splitting A within various approaches.

Methods | Relativistic quasi-classical | Non-relativistic quasi- Relativistic asymptotic
approach [this work] classical approach {20] approach [21]
Z,=1,2,=10,n,=17 =
R, 17.271 17.294 [ 17.271 |
AE(R,) 1.626x107" 1.321x1072 { 1.525%107
Z =1,2,=20,n=12
R, 21.319 21.375 21.319
AE(R ) 2.623x107% 1.917x107 4.881x107
Z =1,2,=30,n=17
R, 27.324 [ 27.434 27.324
AE(R,) 1.053x107* LAl 5.040x107
Z, =1,2Z,=40, n, =22
R, 33.643 33.828 33.643
AE(R,) 3.505%10™ 2.313%107 4,724x107
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3a ponmomoroms smertosy BEE piemsuma Jipaxa 3 axciankHe  CHMeTRHYHHM
NOTEHLIANOM, SKEH HE QONYCKAE NOBHOCO BIAOKDEMICHHA SMIMHMX, aHATITHIHO
poas’asana B minbapepaii ofnacti B oroml oci cuMerpll mnoTemuiany. [leil mimxin
BpaxoBye CHiH-CHOIHOBY TA CRiH-opOiTaneHy m3aemonii. B pameax pospolnenci
cxeMit nodyooBAHE PONATHBICTCRKE NBOUCHTPOBE XEMALDEA QyHkuia, ObuHcneHo
neplli  Zsa 4IeHH aCHMOTOTHEM (38 BCNMKHME  MUK'SICpHEMH  BiICTAHAME)
noreuiany ofsinnol B3aesonl? oHa @ atomost. [lpe UboMy BRepe BAXOBAHO

edhekT MEPEBOPOTY CIIHY.
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