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USE OF WAVELETS IN POTENTIAL
SCATTERING PROBLEMS
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Daubechies compact support wavelets are applied for solving integral Lipp-
manp-Schwinger equation describing particle scattering on a spherically sym-
metric potential. Structure of wavelet representations of physical operators is
discussed. It is shown that for fast decaying potentials wavelets enable a sparse
approximation of the Lippmann-Schwinger equation kernel. Constraiots for

such potentials are derived.

Wavelet analysis was originally devel-
oped in the field of signal processing, since
then the number of applications has in-
creasingly grown. Due to more effective
treatment of local phenomena at different
levels of detail it seems to be more ap-
propriate than Fourler analysis in various
problems, such as data and image com-
pression, seismology, nonlinear dynamics
and many others.

Wavelets have also been found useful to
construct an orthogonal basis set in sepa-
rable Hilbert spaces, namely L2(R). These
bases provide reasonable compromise be-
tween analyticity and the compact support
of the basis functions. Several attempts at
using these bases for variational calculus
in the quantum mechanics, concentrating
mostly on solving the Schrodinger equa-
tion, already appeared, see [4,6]. However,
the results being less satisfactory than ex-
pected because of long-range behaviour of
physical systems.

Orthogonal wavelet bases

The present mathematical theory of wa-
velets is much more evolved than needs to
be considered to our purposes. Therefore
we briefly describe here only the essential
ideas of constructing compactly supported
wavelets in L*(R), based on multiresolu-
tion analysis. More detailed discussion can
be found in many places, see e.g. [3].

A sequence of subspaces Vi, in L}(R)
constitutes the multiresolution analysis, if

for all m € Z following conditions hold

Vm+1 C Hm
flz) € Vi & f(22) € Vi,
flz) e Vie = flz — 1) € V,,
N Ve={0}, U V,=L*R)
meR med

and there must exists a scaling function
w{z) € V5 such that its translated copies
wlx — k), k € Z form an orthogonal basis
for V. The meaning of the sequence is that
projecting a given function onto a subspace
Vi gives a finer approximation than pro-
jecting it onto V. Defining complemen-
tary subspaces W, = V,_, &V, it iz obvi-
ous that W, keeps details from V,,,_ ; which
are missing at the coarser level V. The
translation and dilation properties of the
mutually orthogenal spaces W, are dic-
tated by those of V,. The theory then
ensures the existence of a wavelet function
w(z) € Wy such that its integer transla-
tions ¥¥(x — k), k € Z form an orthogonal
basis for Wy, Thus, following decomposi-
tion of the whale L?{R) space is possible

M

PR)=Vu® D Wn (1)

The definition of W, and the orthogonal-

ity conditions strongly couple the scaling

function and the mother wavelet at differ-
ent levels

olz) = xﬁz&ktp{ﬁm—k},
k
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d(z) = (-D'V2X Ruse(2z - k),
&

see [3]. These equations are extremely use-
ful especially for numerical computations
[1], they state that properties of any scal-
ing function and corresponding wavelets
are fully determined by a unique, possibly
small, set of coefficients A;.

If the sequence {A;} consist only of a fi-
nite (even) number 2P of constituents, the
orthogonality relations do not determine
fy. uniguely. They give just P + 1 con-
ditions to 2P independent coefficients h;
and we are allowed to introduce ancther
P — 1 restrictions to hg. Substantial sim-
plifications appear when a special choice,
first proposed by Daubechies, is taken into
account

f.rpt;i'{.‘r}d$=[}, foaepg

The idea underlying such a suggestion is
that all polynomials up to P —1 -st power
belong to subspace V,, at any level and
thus can be ezactly written as alinear com-
bination including only translates of the
scaling function at an arbitrary level m.
These wavelets possess remarkable attri-
butes: differentiability increasing with the
parameter P or compact support of length
2P —-1.

Representations of operators in partic-
ular bases are of great importance in the
guantum mechanics. From the point of
view of compactly supported Daubechies
wavelets, there are two distinct classes of
operators acting in L?(R), whose represen-
tations in wavelet bases exhibit rather dif-
ferent patterns.

Firstly, we consider local operators such
PE

mura

local potential f;: . Evidently, projecting a
given operator K to V,, matrix elements
including scaling functions which are dis-
tant from each other vanish due to the
compact suppart of ¢(x). In practice, only
a finite number N of base vectors [¢}) € EE‘
is taken into account and the operator K
is hence approximated by N x N matrix
with a band of the width 4P — 3 around
the diagonal.

as the free particle Hamiltonian
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However, a slight complication appears
when converting V7, to the equivalent de-
composition (1). While the amount of non-
zero elements in the representation matrix
pertaining to ¥, is in the order of IV, the
latter form requires Q[N log V) elements
and the matrix possess particular ”finger-
banded” structure as shown in Fig. la. To
get rid of redundancy, it is convenient to
deal with a certain set of elements (note
there’s no mixing between different levels)

ofy = (WRIKIM), BF = (WK ler),
Yoy = (R K W), th = (M| K],

[ S
M > m, with no loss of information. Co-
efficients o, J, v, ¢ may be arranged in a
table as depicted in Fig. 1hb.

Obviously, the above defined set, called
non-standard form', does not constitute a
representation, so the table should not be
treated as a matrix. On the contrary, mul-
tiplication of two non-standard forms of
operators can be easily computed, just in-
troducing some additional terms, in Q{N)
operations. For detailed information about
the non-standard form we refer to [2

/

Figure 1. Structure of (a) standard form and (b)
non-standard form (half sizged) of local operators.

Secondly, we pay attention to operators
which are nonlocal. The Green operator
(E- H +ie) ™! can serve as a physical exam-
ple. In general, even matrix elements be-
tween wavelets with non-overlapping sup-
ports are nonzero: this leads to dealing
with large dense matrices which is very
difficult in practise. Though, considering
some special classes of operators, we are

1Since the representation associated with reso-
lution (1} is sometimes called "standard form”.
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facing more favourable situation. As shown
in [1], if the following conditions held

, 1
\K(z,2)l £ —— (2)
|z — &’
C.'
I i
R e
(:l'.f
K (e, o')] < 7 =P

then, taking the basis of Daubechies wave-
lets with P vanigshing moments, the non-
standard form matrices o, 3, v exhibit fast
decaying off the diagonal

o] + 183 + [}

ik — 1|

e
1+ k- 1P
{3)

2P

In practical computations, the precision is
always limited and thence the representa-
tion matrices can be made sparse, showing
the same structure as in Fig. 1. Matrices
satisfying the estimate (3) also form an al-
gebra, it means that the product and the
inverse of them retain the same structure,

Considerable consequences to quantum
mechanical eomputations with respect to
potential scattering problems are discussed
in the next section.

=

Lippmann-Schwinger equation
Solving the Lippmann-Schwinger equa-
tion is of primary interest when taking the
time independent approach to one-particle
potential scattering

) = ixo} + (E — Ho + ie) " Hy|x),

introducing the free particle Hamiltonian
Hy and the interaction H;. Vector l%) then
containg the whole information about scat-
tering and measurable quantities, like dif-
ferential cross sections, can be expressed in
terms of {yolHr|x).

Suppose now that the interaction is pre-
sented by a spherically symmetric poten-
tial V{r) and F is the initial momentum
of the particle, then the solution |y} can
be decomposed into its angular and radial
part and we obtain following equation for
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the radial part y,(r)

xalr) =priler) + [alr, )V a(r) dr
0

g;{p,’r,r’} =prr'rj;",‘pr{jﬂ;|ip’rb}_ [4]
Mathematically, this is an integral equa-
tion of Fredholm type with the kernel given
b:f Q'J:(p,r r JV(T }

To solve {4) we need to caleulate the in-
verse of the nonlocal operator K=1-
G{}{E}V As we already mentioned, if a
nonlocal operator satisfies additional con-
ditions, its representation in some bases of
Daubechies wavelets can be well approxi-
mated by a sparse matrix. To see whether
K obeys such restrictions, behaviour of the
Green function g(p,r,r") and its deriva-
tives must be investigated. Here we out-
line only the basic results: glp,r ') is
symmetric and continuous in spatial vari-
ables », ', stays finite for any fixed » and
r’ — co and the same holds for its deriva-
tives, partial derivatives with respect to
both r and ' possess singularity at r = ¢/
— the higher order of derivatives taken the
stronger the singularity is.

However, recalling (2, 3), complications
arise from the ocscillations as v — oc and
not from the existence of a singularity at
r = 1. Therefore we employ symmetrised
version of the Lippmann-Schwinger equa-
tion

VIx) = V|xo) + VGo(E)V [x}.
Because the behaviour of the correspond-
ing kernel V(r) gi{p, v, r') V(¢') at large dis-
tances r and v strongly depends on the
form of the potential V(r), it is reason-
able to expect that estimates (2} hold for
fast decaying potentials. Then we want to
know how fast they must decay.

Requirements to a local potential V{r)
written in terms of |r —»'| immediately fol-
low from (2), however, they are not very
transparent. To that purpose, we deduced
alternative conditions for V(r) which are
easier to verify, but which are more re-
strictive. Derivation of such conditions is
rather lengthy, so we state here only the
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final result: if derivatives up to P-th order
of a spherically symmetric potential V'(r)
are continuous in {0, oc) and obey

ar
dr®

Dy

rPFL!

V[r}‘f_‘{ n=0...P
|

then the non-standard form matrices of the
operator VG (E}V satisfy the previously
appointed inequality (3). Clearly, poten-
tials that are smooth enough and decay
exponentially can serve as an illustrative
example, but this is rarely the case we are
encountering in physics (remind Coulomb
or dipcle interaction).

Discussion

In practice, we are always dealing with
a finite subset of basis functions and hence
approximating wavelet representations of
operators by NV x N matrices. An integral
equation can then be solved by a standard
direct method in @(N?) operations. Using
wavelet bases, the representation mafricez
are large in dimension, but we may choose
noindent only such basis functions that ap-
proximate the solution well. This was done
in [4,6], however, it requires some prelimi-
nary information about the solution which
is not always available.

When the representation matrices are
sparse, retaining all the basis functions and
applying an iterative method seems to be
more suitable. Congidering a Daubechies
wavelet basis, the number of iterations M
does not depend on N and the solution of
the Lippmann-Schwinger equation can be
obtained, in case of fast decaying poten-
tials, in @(M N log? N} or even (using the
non-standard form) @M N) operations.

In the end, we would like to point out
that it is mainly the translation invariance
property that complicates numerical treat-
ment of Daubechies wavelets in two ways.
Due to the compact support of [y} we
must take a large number V of basis func-
tions to get a reasonable approximation of
a function. Secondly, restriction of wavelet
bases to a finite interval is highly nontriv-
ial and in fact we lose the translation in-
variance then. An efficient method of re-
striction, presented in [3], consist in chang-
ing the scaling functions and the wavelets
near the boundary preserving some propet-
ties (vanishing moments of the wavelets at
least). Consequently, the matrix elements
corresponding fo wavelets near the ends of
the interval are modified, fortunately, the
amount of such elements does not depend
on /N. On the contrary, the idea of scaling
invariance, decomposition into an average
and a detail, is very understandable and
useful.
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BUKOPUCTAHHSI EJJEMEHTAPHUX XBWIb
Y 3AJJAYAX ITOTEHIIAJIIB PO3CIIOBAHHSI

M.KoBauiu, fl.rupaqeﬂ, K.Haiizap

MateMaTHro-(isuunui daxynerer, Kapnis yrisepcuter, [1para, Yexia

Jna poss'asanis iHTerpameaoro pisnands JlinMasa-lsinrepa, Mo omicye poacimo-
BAHHA UACTHHOK HA CepHuHO CHMETPHYHOMY MOTEHLIATI, BHKOPHCTORYHITECH
KoMIakTyi enemenTapni xeuni Hobem'e, OOropoproeTLCA CTPYKTYPA TPEACTARNEH-
A disHIHUX onepatopis eneMeHTApHMMH xBHAAMH. [loxazano, wio ana noTentinis
31 IORMAKHM po3nagoM eIeMeHTApHI XBHN] Ja0ThH 3MOTY anpOKCHMYBATH 2P0 pib-
saann Jdinvana-lisisrepa. Buseneno ofMexenHs g TAKHX NOTEHALIANIR.



