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ASYMPTOTIC APPROACH TO THE PROCESSES OF
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COLLISIONS
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Two-electron capture at slow ion-atomic collision is under consideration within the
framework of asymptotic approach. Cross section of one- and two-electron capture
at separate final state is calculated using the method of strong-coupling channels.
Different ways of two-electron transfer (straight and step-by-step) and their relative
contribution to the total cross-section of process is investigated.

Introduction

Processes of two-electron exchange at
slow multicharged ion and atom collisions
similar to

A(Zu—2)+ + Bt 5 gt +B(Zb_2)+(n1l1’nzlz)’(l)

attract increasing attention of both theoretical
[1-5] and experimental groups [6-9]. Firstly,
importance of these processes for application
is explained by possibilities of using them
for controlled thermonuclear synthesis [10],
obtaining particles with great excitation en-
ergy what is interesting for inverse density of
population creation. Secondly, theory of
atomic collisions needs furthermore investi-
gation of the correlation of electrons at the
dynamics of two-electron exchange [2-4].
And finally, detailed studying of two-
electron processes leads to better under-
standing of the mechanism of three- and
four-electron exchange detected experimen-
tally [11] (resonance exchange of three elec-
trons was theoretically investigated [12] in
the framework of asymptotic approach). At
present time one of the most successful theo-
retical descriptions of the process similar to
(1) is achieved in the framework of asymp-
totic theory of atomic collisions [2-4]. In
work [3], using a quasi-classical approach,
most general analytic expression for matrix
element of two-electron exchange interaction
of atom and multicharged ion with different
nuclei charge is obtained. Built in [3] theory

corresponds with the cases when probabili-
ties of the one-electron transfer are smaller
then those for two-electron transfer, and one-
electron channels of reaction are negligible
comparatively with those for the two-
electron case. However, while distance be-
tween particles decreases, the possibility of
one-electron transfer at the excited state of

the ion B% " increases and exceeds two-
electron capture. This fact on the first view
closes two-electron channels the more
strongly the greater is the probability of one-
electron transfer. Nevertheless, two-electron
capture is probable as a sequence of two-
electron process which consists of simulta-
neous transition of a preliminary captured

electron from the excited state[nl) of

B 1o the ground state |n,1,)of B%~"
and an electron capture from the ground state
of the 4% jon to an excited state |n,1,)

of B% *ion:

A2y gy 42 p@ ()

)
— A% + BB (] ml)

The chain of reaction (2) occurs during a
single act of coilision, thus great probability
of one-electron exchange makes possible an-
other so-called step-by-step mode of two-
electron transfer which is under considera-
tion in this work. A similar possibility of
two-electron capture was considered earlier
[13] in the case of collision of an atomic
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particle with the same particle but without
two electrons. Reaction

He (1s?) + 4r° (35) >
—> He™ + 4357 milimaly), (3)

is considered as an example of the
asymptotic approach application.

Matrix element calculation

Here we designate as I/anaja and
]/ 2n;}, ,, the first and the second ionization

potentials of A2 pla-2e particles, re-
spectively. Further we shall be restricted to
considering a quite general case when ioni-

zation potentials satisty »,,,, >n,,,, condi-

tion. Then the leading term of two-electron
exchange matrix element of interaction be-
tween highly charged ion and atom is deter-
mined by configuration when tunneling
electrons make transition at the different nu-
clei and independent electrons approxima-
tion is correct [2—4].

The approximation of “frozen” cores of
particles 4 and B reduces problems to the
consideration of two active electrons motion
in the field of 4%* and B*" ions. Here we
designate by ¥,(7,,7,) wave function of

A% jonand by ¥,(7,.7,) wave func-

tion of B%™?* jon. In detail the analytic
representation and the scheme of obtaining
these functions is described at [3]. Our task
is to evaluate the matrix element [2-4]:

H, =<¥,

Ay, >-<, |W,, <,

a7, >4

where A — is full Hamiltonian of the system
at the two-electron approximation:

H=—%L—%+Vu(rla)+Va(r2a)+
ZZzZ, 1 2
+Vb(r1b)+V,,(”zb)+ FRR

12

Here Z,,Z, are effective charges of A
and B particles’ atomic core, 7,,r,,(i=12)

a’

are distances from the i-th electron to the
core of A and B; V,(r,,)and ¥, (r”,)- inter-
action potentials of the i=1 electron with
A** and B** respectively; V,(r,,) and
V,(r,) - the same values for the i = 2 elec-
tron; R - the distance between A and B nu-
clei. In [2-4] it was shown that only the op-
erator of interaction between electrons makes
non-zero contribution to the matrix element

(3). It is convenient to represent interaction
between electrons as an expansion of a small

parameter R~ (multipole expansion):

L _4m (-1)°
hs —IZZ - @ +lz)!A1(?1)Az(72)x (6)

R b+l
Iimy Lymy

[(211 + 1)(212 +1)(ll + ml)'(ll ‘ml)!(lz +m2)!(12 ‘mz)!]—]/z’

where A, =7,Y,, (Qq). In order to keep the

leading term of the matrix element we should
limit summation at (5) up to minimal mul-
tipole term, which corresponds to the allowed
transition (dipolar transition in most cases).

Further for the asymptotic of two-
electron wave functions ¥,(7,,7,,) and

¥ (7,.%,) [3]: we use an analytic repre-

sentation:

7, (’7115 Fra ) =@ (’711) ) 2P (}_;Za )" ¥, (’7117: ra ) =@ (’_;11: ) Pba (FZa )’ (7)

223



Haykoswuii BicHuK Ykropojacekoro yHiBepcutety. Cepis ®izuka. Bunyck 8. Yactuna 2. — 2000

[21+1
C”zab(rb Zf”(rb 10 6b!¢b)( ])I By, By = 2

nla p 5 nla(Za-1) nIZaZb N1aZp
D, = \/— (21, +1) 2z o oR) . (3)
2(z,-2,+1)

1 2z,
(R) RmalZamik exp| ~ S e = > +1 \/n—;’f_}?
2Z,n;, 2Z,n;,

e (rb) being regular at origin partial solution of equation for radial Green’s function [3] at the

model potential V,, = _Z + A;Z’ of particle B;
ror
N,z
2V r(i+S,-n,Zz,) Zrb
== —y 7 , 9
.f[l(rb) (}’l}a) T(2S,+2) Bialy; S/ ", ( )

here S, - is an effective orbital quantum distant particle; Y,,(6,¢)- spherical har-
number at the model  potential monic; M., (x)- Whittaker's function; 4, -

Vo = 4 el 4, , 4 -an empirical value an asymptotic coefficient Qf the ﬁrst.trans:fer-

roort ring electron, (wave function ¢,,, is gained
depending on the electron energy, calcula- by formal replacement a <> ). We obtain
tion procedure of these parameters is de- the next expression for matrix element,
scribed in detail in [3,14]; @5, @q,- One- which corresponds to the straight mode of
electron wave functions in the vicinity of the the two-electron capture (1):

1, 1
H, = _(02 01 zJ R23 0, ) >4 <Py Ql(,bo)‘(ob >ps (10)

nZ,-3
I'2-n,Z
<] |>,= ‘/E'ZjﬂDab (_2_} i(__ni_g.zﬁ;(iz_nwzag;_z__)goq, an
on l+ Zanle Zn,+1) "
2 2

3/2+5) m,Zy—5-3
s OB (375,

> 6. TG +25) “\nm

a

12
\/—r(ns —m,) I8+, :‘?4 JF| S, +8, +4,-n,Z, + 5, + 128, +2;—2— 2
2S +2) 1 n o +S) + N,
1, m —=+1
2 2n, =
2 I‘(1""5'2"77MZI>) F(S1+S2+4) VS, +8, +4,-n,Z, + 8, + 1,28, +2; 2
T(ZSZ N 2) ) " S48, +4 n,
Sy ta ——
[2 2n2bj =
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Within the framework of our approach
the straight mode of the two-electron capture
can be described as a sequence of their cor-
relation interaction: the first captured elec-
tron passes from the excited to the ground
state of B% " another electron transfers
from the ground level of 4% to the wave
function “tail” of the excited state

|n i, myl,) of B%™? jon. Under the se-
lected condition n,,,, >n,,,, on ionization

@59, functions are non-

potentials,

perturbed atomic wave functions, which we
consider to be known.

The matrix element, which describes the
step-by-step mode of the two-electron cap-
ture, can be represented in the same form
(10). However, the transfer at the particle B,
which is contained in (10) as matrix element

< ¢ab

transition from the excited state.nl) of

Q,(f’(,)'(p,, >, , corresponds to the electron

BY%*" 1o the ground state |n,1,)of B,
and taking into account the relation

0 0 0

ﬁdﬂ-Y,,”"(9,¢)K:’-’(9,¢)K:"(a¢)=\/—-~——(”’”MJ(“ " lfj(l' i O

4r(21, + 1)

expressed in the form

3488 530058 L arss(0)
BB

m, m, m;

<||>,=1%6 S

2 S rla+sOas0) 251 (L 101LY 14
S TG asP)r G250 (g, +, VT N2 w1 0 0 o) Y

.j— the Clebsch-Gordan coefficient;

- T

2 2
i ﬂ J
2
orbital quantum number of electron at

A1 ’- the ionization energy, and

|

B®*" and B% " states, respectively.
Deriving (14) we have simulated the bound

states of B%~*" by the wave function of
the ground state at the above mentioned
model potential ¥V, , with appropriate or-

bital quantum number [3,14]. Such assump-
tion is justified because of closed shell of
Ar®" (35°). However when the dipole transi-
tion is forbidden (for example, 4p-3p), we
should considesr 4p level as the first excited
after “ground” 3p state, and keep a quad-
rupole term in (6). The sign in (11) is se-
lected from the condition of coincidence
model and Hartree-Fock wave function [15]
at large distance from the electron to the
nuclei.

Results and discussion

In Fig.1 diabatic terms of initial

(He + Ar®*) and final (He’* + 4r*") configu-
ration corresponding with the channels of

creation Ar”™* ions at 3p3d, 3p4s,3p4p
and 3p4dexcited levels, as well as diabatic

terms of (He" + Ar’*) configuration of A4r’*
ground 3pand excited 3d,4s,4plevels are

presented. For more excited states of 4r*" and

Ar’* appropriate channels make negligible
contribution into the total and partial cross
section and these states were not taken into
account. As shown in Fig. 1, quasicrossing of
one-electron terms, associated with one-
electron captures, occurs at larger distances R
than in the case of the two-electron capture.
Expression for the one-electron capture
matrix element was taken from [14], where
the procedure of deriving them is described in
detail. The cross-section value obtained by
numerical integration of the strong-coupled
channels system is presented in Fig.2. Our
theoretical predictions are seen to be in good
agreement with the experimental data [7,8].

225



Haykoswuii BicHuK Ykropojacekoro yHiBepcutety. Cepis ®izuka. Bunyck 8. Yactuna 2. — 2000

+ 5+

He + Ar (4p)
+ 5+

He + Ar (4s)
+ 5+

He + Ar (3d)

+ 5+
He + Ar (3p)

He + Ar®*

p He2++A A

" I {(3pdf)
1 2+ 4

1 He™ +Ar " (3pad)
1 2+ 4+

12 He™ e ar* (3pap)

24

P He +Ar4+(3p4s)
1 2+ 4

15 He™"+ Ar**(apaq)
1s

Hez+ +Ar 4+( 3p2 )

Fig. 1 Principal scheme of adiabatic energy levels for reaction (3)

NE Experimental data
o
© | | 3p3d+3p4ds
‘o A 3p2
-~ 2
S ° A  3p5L+3d
8 |- @ Total cross section
© Total cross section
-
5I ¥, Straight and
step-by-step mode
4 3p3d+3pds+3pap
2+ .
Z Straight mode only
- 3p*
3pad+3p4af
o] | 3 1
1 7 V, 107 cmisec

Fig.2. Total and partial cross section for two-electron capture (3). Experimental data from [7]; m - 3p3d + 3p4s; A-
3p’; A - 3pSL + 3d°; e - total cross-section; o - total cross-section [8]. Solid lines — theoretical prediction, this
work. Dashed line — total cross-section for two-electron capture when the straight mode of transfer taken into ac-
count only.
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There is a nonconformity with our
interpretation of the partial final state and
that presented as experimental data. For ex-
ample, data marked as solid squares corre-
sponds to 3p3d and 3p4s final state of Ar*
but we interpreted these data group as 3p3d,
3p4s and 3p4p — levels. Besides, a mecha-
nism of final state of Ar*" formation was es-
tablished. The straight mode of the two-
electron capture makes contribution to the
total cross-section about 30% only, but step-
by-step mode makes about 70% contribution.
The charge exchange to the ground state of
Ar’* (35°3p) and Ar** (35°3p?) appears to be
less then the transition to the excited states
what is in good agreement with the experi-
mental data.
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ACAMIITOTUYHIIA X IO ITPOIECIB
TBOEJEKTPOHHOI'O 3AXOILIEHHS ITPH
NMOBLILHUX IOH-ATOMHUX 3ITKHEHHSIX

M.I.KapOoBanensn, M.B.Xoma, B.10.JIazyp

Oizuunuii GhakynpTeT, YKIOpOAChKUH HalllOHAIBHUI YHIBEPCUTET,
Byn. Bonommuna, 54, Vxropon

Po3ryisiHyTO NpOLECH ABOCNICKTPOHHOTO 3aXOIUIEHHS B paMKaX acUMIITOTUYHOrO
nigxoxmy. [lepepisn OfHO- Ta ABOENCKTPOHHUX NPOLECiB 3aXOIUIEHHS y MapLialbHi

CTaHM OOYMCIEHO METOAOM CHIBHOIO 3B’A3Ky KaHANiB.
3aXOIUIeHHs (npsAMHR Ta TOCTaniliHui), Ta

MeXaHi3MH HABOEJICKTPOHHOI'O

PosrnsHyro  pisHi

MPOAHATI30BAHO 1X BITHOCHHUH BHECOK Y IIOBHMH Ilepepi3 npoliecy.
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