Uzhhorod University Scientific Herald. Series Plegsissue 8. Part 1. — 2000

FURTHER DEVELOPMENT OF THE CLASSICAL
ELECTRODYNAMICAL MODEL OF ATOM

V.M.Simulik, L.Yu.Krivsky

Institute of Electron Physics, Ukrainian National Academy of Sciences,
Universytetska St. 21, Uzhhorod, 88016, Ukraine
e-mail: sim{@iep.uzhgorod.ua

Mew results in construction of classical electrodynamical model of atom are
presented, The classical electrodynamical equation which is the basic statement of
the model is solved directly by means of separation of variables method. The Bohr's
postulates are proved to be the consequences of the equation under considerations.

The foundations of the model under con-
sideration were formulated in [1-4] and are
based on weakly generalized Maxwell equa-
tions

rotd -3,eE =7, rotE+ 8 nH = . )
diveE =p,, divpH =p_,
where
i, = gradE’, 1,1,5 = ~gradH’,
p. = —5udE" + Egrad &, @
Pusg = =66, H" + Agrad 41,
N A
o (3)
Dy

H(x) =1 =
and, moreover, where (E,[1) are the elec-

tric and magnetic field strengths, (2) are the
comresponding  densities of currents and
charges, E°, H" are two real scalar fields
generating the gradient-like sources (2), and
(3) are the electric and magnetic permeabil-
ities of the medium in Sallhofer’s form [3]
(P=—Z¢/r, the system of units s =¢ =1
being used).

One can easily see that Egs. (1) are not
ordinary equations known from the Maxwell
theory. These Egs. (1) have the additional
terms which can be considered as the mag-
netic current and charge densities — in one
possible interpretation, or the Eqgs. (1) can be
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considered as the system of equations for
electromagnetic (E,H) and scalar E°, H'
fields ~ in another possible interpretation.

The reasons of our gently generalization
of the classical Maxwell electrodynamics are
the following.

1. The existence of direct relationship of
Egs. (1) with the Dirac equation for the mas-
sive particle in external electromagnetic field
in the stationary case — these equations were
shown [3] to be mathematically equivalent in
this case.

2. The Eqgs. (1) can be derived from the
principle of maximally possible symmetry —
these equations have both spin 1 and spin %
Poincare symmetries and in the limit of van-
ishing the interaction with medium, where
e=p=|, they represent [6, 7] the maximally
symmetrical form of the Maxwell equations.
This fact means first of all that from the
group-theoretical point of view of Wigner,
Bargmann — Wigner {(and of modern field
theory in general) Egs. (1) can describe both
bosons and fermions. As a consequence of
this fact one can use these equations par-
ticularly for the description of the electron.
On the other hand this fact means that in-
neratomic classical electrodynamics of elec-
tron needs further (than it was done by
Maxwell) symmetrization of Weber—Faraday
equations of classical electromagnetic theory
which leads to the maximally symmetrical
form (1). Below we demonstrate the possi-
bilities of the Eqgs. (1) in the deseription of
testing example of the hydrogen atom.
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In contradiction to [1-4] here Egs. (1) are
solved directly by means of separation of
variables method, It is useful to rewrite these
equations in the mathematically equivalent
form where the sources are maximally simple:

rotH - &8 ,E = 7],

rotE + ud H = ]mﬂg : -
div B=pl; ®
divlH = pp,, .
where

j, = gradE °,

_jmag = -gradH ﬂl

P; = —:Uff"uEu, (5)
Pr:mg = _E':?DH“'

We suppose the harmonic time depend-
ence and search for the solutions of Eqs. (4)
in the harmonic form. It is useful to separate
equations which were obtained into follow-
ing subsystems:

(weE} — 8, H? + 3,H, +8,E° = 0,
weHy + 8 H, +3,H3 +8,H} =0,
~owuE} +8EL +8,EL +8,E, = 0,
l@pH}, - 8,E} +8,BE, - 8,Hp, = 0.
[weBl - 8,H} +8,H: +8,E% =0,
weE; - 8,H, + 8, H; + 8,E} =0,
opH\, - 8,E3 + 5,E2 — 8, H =0, @
lopH: -8,E, + §,E; ~8,H} = 0.

We make the transition into the spherical
coordinate system and for the first subsystem
in (6) choose the d’Alembert Ansatz in the
form

E; = C_E RH¢P|m43 e
B =€ R P Te Ry
|HS =T, R P ™, ()
oGk Pttt

k=1,23.
We use the following representation for
&,, 6,, &, operators in spherical coordinate
system

5,CRP"e"™ = %Ecosm(ﬁ.,m}m” R,__,P’,T{"]+el"{’“'”“'(3m | %
8,CRP"c™™ —HE—ITEMH-:;}(R,! (PEHL_R, PR il Do 0 =h IE ()
5 e
8,CRPfe™ =~ — (R,,, (1+m)P™ + R, (1-m+1)B,)
Substitutions (7) and (8) together with the assumptions

RER = RE"{E* = Iﬁ'!RH,:, =R Hifffy =1y,

W, =M,=m,~-l=m,-1=m,

Cy, =iCy,,Cy = =iC,,Cy =-iC; ,Cy =-iC;p, o

Ll Hemil)ol - ©l =0l

Cl =CLUl-m)il=tf-1=""
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Co, = ‘C'g.(fi}r Hm),{'?g; =-CL =T",
: ,
CE:"Cgs("g_"erl)-f}rf=I}?+lzgﬂ_ ©)

into the first subsystem in (6) guarantee the separation of variables in these equations and lead to
the same radial equations as in the Dirac theory (for the second subsystem in (6) the procedure
is similar)
@Ry - Ry,,=0, poRy +Ri,,,=0, (10)
gisas g

EWRE“RHJ!I:m umR}-II'i’REHH]:ﬂ; R:aE(E'i"r_]R, (11

By substituting (9) into (7) one easily obtains the angular part of the hydrogen solutions for
the (E,H,E",H") field. Taking the real part of thus obtained expressions we finally get:

E; = C"'RLP cos(m + 1)g, EJ" = CT"RyPI" cos(m + Doy,

Ep' =-C'(I'=m+DRP? cos(mo), EF" =C™"(1"+m)RIPH  cos(mo),
E;? = C'(I' = m+ )RPT  sin(mep), Ex'® =-C(1" + m)REPT  sin(mo),
;" = ~CRLBI! cos(m + Do, B3 = ~C'RUPE cos(m + Do,
H" = C'REPM | sin(m + 1o, H;" = C"RIPI’) sin{m + D)o,

H' = C7'(1' + m+ DR, PT sin(me), H" =-c(" - m)R P I sin(mg),
H = C( +m+ I)RLPJ'T' cos(me), 2 e T LR ) Pl cos(me ),
Hg = C'RyP/ sin(m + 1o, H™ = -C™"RyPi" sin(m + D),

(12)
E;![D S __C+El|:1” B ijng E'I'._}S(m'[l}}:

Billis C*"REFITZ} cos(m + 1)o,

E;" =C*(I' + m+ DRPT cos(mo),
Ey' = CY'REPI cos(m + 1o,
Ex? = C'R P! sin(m + D)o, Ep"’ = C'RgPIT sin(m + Do,
B = —C*(I' = m + 1)RLP? . cos(mo), E;" = C™"(1" + m)RYPT_ cos(me),

1tel

H® = -C*'(I' = m + DREPT sin(me), Hp = C""(I" + m)REPT | sin(mo),

H;!' = C'RLPM! sin(m + 1o, HM = CTIRy P sin(m + Do,

H"? = ~C*'RyP"™' cos(m + 1)o, H;" = ~C*"RyP1"" cos(m + 1o,

H;” = C'(1' + m+ YRPY sin(mo), H;" = -C*"(1" - m)RP] sin(me).
Because of the fact that radial equations (10), o mqc’

(11) coincide with the R-equations of Dirac ST
theory the procedure of their solution is the (R P e ey e

same as in well-known monographs on S e
relativistic quantum mechanics and can be Here we show on the basis of our model
ﬂ!’ﬂ.lﬂed. Th& .ﬁﬂal I‘ES].I].T, 15 Ihe Sﬂm‘ tha't th'f.‘ ﬂsserﬁﬂns kﬂﬂWﬂ as a Bﬂhr"s PGE'!U-
merfeld-Dirac formula for the hydrogen lates are the consequences of Eqgs. (1) and of
spectrum. the classical interpretation of our model, i. e.
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these assertions can be derived from the
model, there is no necessity to postulate
them from beyond the framework of classi-
cal physics as it was in Bohr's theory. To
derive the first Bohr’s postulate one can cal-
culate the generalized Pointing vector for the
hydrogen solutions (13) of Egs. (1), 1. . for
the system of stationary electromagnetic and

scalar fields (E,1LE°,H?)
So = Id3x{Ex H-EE°~HAH"); . (14

Such calculations lead to the result that not
only the vector (14) is identically equal to zero
but the Pointing vector itself and its scalar field
term are also identically egual to zero:

jdngxH = (),

(15)
[a’x(BE°+ AH") =0
This means that in stationary states the
hydrogen atom does not radiate any Pointing
radiation neither due to the electromagnetic
(E,H) field, nor to the scalar (E® H?)
field. That is the mathematical proof of the
first Bohr's postulate. The similar calcula-
tions of the energy for the same system

W ]E [a*x(E + 7 + E2 + H}) (16)

give a constant Wy . depending on #, [ (or &, )
and independent of m. In our model this con-
stant is to be identified with the parameter @ in
Egs. (1) which in the stationary states of
(E__H, E®.H") field occurs to be equal just to
the Sommerfeld-Dirac value @’ (13). By

abandoning the 71 =C =1 system and put-
ting arbitrary “A" in Eqgs. (1) instead of & we
obtain final @, with “A instead of 4. Then
the numerical value of A can be obtained by
comparison of m,ﬁ"d containing “A" with the
experiment. These facts complete the proof of
the second Bohe’s postulate,

This result means that together with Dirac
or Schrodinger equations we have now the
new equation which can be used for finding
the solutions of atomic spectroscopy problems.
In contradiction to the well-known eguations
of quantum mechanics our equation is the
classical one. On this basis the classical elec-
trodynamics model of atom is formulated.
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HOJAJIBIIAY PO3BUTOK KJTACHYHO
EJEKTPOJANHAMIYHOI MOAEJI ATOMA
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[pegcTaeneno Homi pedyNLTATH B NOSYAOR] KNACHYHO SlekTROAMHAMINHOT Moaen
aToMa. FiacwuHo eNesTpoLHHEMIYHE PIBHAHHA, M0 € OCHOBHHM TBERIHSHHAM
Mogen, po3s asano Geanocepelives METON0M Binoxpemnenns sdinnnx. Josenewo,
e nacTyraTi Bopa € HacnigkaM iy poariadyeEaHoro pieHEHEA,
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