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A theoretical description of the energy spectrum of the nuclear excited slates has
been carried out within the framework of the adiabatic three-particle shell model of
nueleus in terms of collective variables, namely: hyperradius R | hyperangle & and
conventional spherical angles {&,w,), i=1,2, A new model is based on the
assumption on the separability of the motion of the valence nucleons over fast
motion on the angular variables and adiabatic (slow) motion along the hyperradius
K . A convenient notion of the potential term UJnr [R} of nucleons is introduced. The

efficiency of the adiabatic approach is illustrated on the example of numerical
calculations of the energy spectrum of the lower excited levels of the °C, " O,
2 Ca, *Ni, " Ne nuclei, whose unfilled shell contains two nucleons.

1. The inclusion of the one sort of
nucleons paring in the nuclear theory which
play an important role in the formation of
excited states of nuclei, and the angular and
radial nucleon correlations study lead to the
necessity of a method for calculating the
stationary nuclear states that extends beyond
traditional one-particle Hartree-Fock appro-
ximations [1].

To solve certain problems in the nuclear
theory a hyperspheric adiabatic approach
(HAA) which exceeds one-nucleon ap-
proximation has been suggested in papers
(2,3].

Further development and application of
this approach to the study within the frame-
work of an adiabatic multiparticle shell nu-
cleus model of the energy spectrum of nuclei
with the inclusion of both strong and Cou-
lomb interaction in the case of valence pro-
tons is important, Tt should be noted that a
new so-called adiabatic model of the nucleus
[2,3] is based on an assumption of the sepa-
rability of valence nucleon motion over fast
motion on the angular variables, i.e. at the
S8 {Q} sphere and an adiabatic (slow) motion

along the hyperradius R .
In the case of ;X nucleus with two nu-
cleons the nucleus description in HAA is
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performed in the collective variables terms
whose role 15 played by hyperradius R and
hyperangle o

R ='[?'|: +I’12}”:: o= grcrg{rz ,-"rj [l}

and conventional spheric angles
i=1,2.

In the adiabatic multiparticle shell model
of nucleus [2,3], as well as in the traditional
multiparticle model of nucleus [4], only the
residual interaction, ie. the correlation be-
tween nucleons, is taken into account, but
mare thorough methoed is applied in the first
one where the adiabatic potential term of the
nucleus nucleons s (R} is used.

F={p,0}

It is known that nucleons paired correla-
tions leading to the existence of the super-
fluid states of nuclei [5] are taken into ac-
count correctly and consistently in the super-
fluid model of nucleus [6,7] based on the
secondary quantization formalism,

In this paper we suggest paired correla-
tions between nucleons to be taken into ac-
count in the potential approach in the adia-
batic shell model of the nucleus frame based
upon the assumption of middle average self-
consequent field of shell model and the re-
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sidual interaction of nucleus valence nucle-
ons. Thus, we assume that separate nucleons
in the nucleus can be described by a set of
quantum numbers », [, j, m of the inde-
pendent particle model.

2. The effective self-consequent field is
modelled by Woods-Saxon potential [8] in
the adiabatic shell model of nucleus

U,@) =[—P; N2, [Hexu[rhﬁ" H +
5 o a,
+p;f1—f,] o n )
2

where in the case of valence protons the po-
tential of Coulomb interaction V|, is mod-

elled for simplicity as Coulomb potential of
evenly charged sphere and Coulomb interac-
tion of valence protons has a standard form.

For simplifying further calculations the
residual strong interaction of valence protons
is modelled by the potential with zero radius
of action taking into account the repulsion of
nucleons at small distances [8]

| e
ARl "gﬂ(—z—-}]c?(r, -r,). (3)
The p(@] term in (3) effectively

takes into account the repulsion of nucleons
at small distances and has the sense of a total
one-particle density of nucleons. A relative
contribution of repulsion is defined by a con-
stant g (g >0). This choice of residual in-

teraction essentially simplifies further the
algorithm of the energy spectrum calculation
because it allows its matrix elements to be
calculated in an obvious analvytical form, and
besides, probably, does not distort the real
situation, though in the future more realistic
models of interaction may be considered.

The i-th nucleon spin-orbital interaction
has a form:

1 &,
Wi =-x - T8,

P i=1,z (4)
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Thus, in the frame of a two-nucleon
adiabatic shell model of nucleus the potential
energy V(R.0Q2) of the system under consid-
eration in terms of collective variables has
the form [2,9]

V(R,Q)=U,(Reosa)+W,(Reosa )], -5, )+

+I7 {Rsm&}+ﬁ’ [Rsma]{f }+V.- +¥.. (3)

Note that the description of the station-
ary states of deformed nuclei whose average
self-subsequent field is modelled by the ani-
sotropic Woods-Saxon potential, is given in
[10].

3. Let us shortly remind the basic state-
ments of HAA [2,9]. For this purpose we
consider any ;X nucleus with two nucleons
above the filled shells. After separating the
motion of the system inertia center, and con-
sidering the core mass as infinitely large,
schridinguer equation for the stationary
states in the hyperspheric coordinates {R,ﬂ]

can be written as (}"z =m, = l]

HY(R, Q) = E¥(R,0), (6)
where
A
J £ My R(R.CY). 7
R5 e (R.CY). (7)
and h(R,Q) has the form
h(R,Q)= A+ RV(R,Q). (8)

Here A’ is an angular part of B at the
5*(Q2) sphere:

1 & bl
----——Sln @eos' a— +
sin® ercos’ @ S o

L 15
R v ¢
B0

(©)

cos g

and F(R,Q) is the potential energy (5) of
the given system.



HaykoBuii BicHuk Ykropoacekoro yHiBepcutety. Cepis @izuka. Bunyck 8. Yactuna 1. — 2000

The full set {® (R,Q)}e L,(57) of the
spectral problem solutions is taken as the
hyperspheric adiabatic basis

H(R,Q)D,(R,Q) = U, (R)D,(R,Q). (10)

LE (R) are the nucleon adiabatic terms

depending on R as the parameter for a fixed
set of g quantum numbers. 4-angle vari-

ables {6 .} separation is performed [2,9]
by expanding tI!ﬁ[R,ﬂ] over the spinor
spherical functions. The choice of the basis
(10} allows the operators of spin-orbital in-
teraction to be diagonalized constructively.
The expansion of the total wave function
of the system ¥(R,Q) over a hyperspheric

adiabatic {® (R,Q)} basis has the form
¥(R,Q) = R7" Y F(R)D,(RQ). (11)
M

The adiabatic potential terms U, [R} of
nucleons and the corresponding CDHI:Rjﬂ}

basis functions are found by numerical solu-
tion of the systems of differential equations
over the variable o

+U (R (Reh+
de? cosfe osinfer W }w"”"‘* )

[ d L+ L+

R S ViR, (Ra)=0, (1)

for coefficients

@il (Ra)=sinacosa CIPE’J}:”: (R,a). (13)

The system of equations (12) iz com-
plemented by the corresponding boundary
conditions [2,9] which ensure the o"“'(R,a)
function limitation at zero and the Pauli
principle fulfillment.

The energy spectrum of stationary states
of nucleus within the framework of a new
adiabatic three-particle model is found [2,9]
by the numerical solution of the system of
coupled differential equations for radial
functions F,(R)

‘f

+§{Hm (B, R+ Qﬂff@gﬁ"l (B0 m}]} =
{14)

where the matrix elements H,.(R) i O,

are defined by the formulae

¢ ‘
H, (R =H,®=Lo,®k0| Lo,ka) o
i R f )
|

g (B)=-0, (K= -('1*,, ER,S‘IJQ s ®, ( R,sz}fu. (16)

Radial functions
boundary condition

F,(R) satisfy the

F,(0)=F,(x)=0. (17

At numerical calculations, the [0,%0)
interval over variable R is replaced by
[0,R__] finite interval, and the system of

equations {14) is limited by a finite number
of equations. Adiabatic approximation cor-
responds to the conservation in (I11) of a
single term which reduces the system (14)
10 one equation.

An explicit form of the matrix ele-
ments of the potentials due to a strong in-
teraction, shown in (12), is given in [9,11],
and the matrix ¢lements of the Coulomb
interaction potential of valence protons are
easily found in an explicit analytical form.

It should be noted that the choice of the
average potential in the form of (2), and
the residual interaction in the form of (3)
enabled us to find its matrix elements in an
explicit analytical form and, thus, to sim-
plify considerably the algorithm of the nu-
merical solution of system (12) with re-
spect to U (R)/R*, though in the future on

can consider more realistic models of in-
teraction. Note that in our previous papers
[9-12] in order to simplify the considera-
tion we have restricted ourselves to the
valence neutrons as the valence nucleons.

100



Uzhhorod University Scientific Herald. Series Plegsissue 8. Part 1. — 2000

Q.0

12 14 18

a 10
R{fm)

Fig. 1. The behaviour of the O nucleus potential curves (terms) U, {R}‘f i

Table 1. The results of the *“C, "0, *Ca, **Ni, "*Ne nuclei energy excited state calculations,

Nucleus | Nucleon con- e Eguper [13] Etnese Ecuper [13] U (RYR? at
Ay figuration for "X, for MX, for M1, R=14.985 Fm,
: MeW MeV MeV MeY
1ds- Ids; 0 0 0 -1.2177 -1.5252
Tdys 1 28 1.7660) 17667 =1.2177 -1.5252
= 1dsp ldss & 4.1420 41329 12177 —1.5252
C [ 2sp2sm 0 S 0RT0 50797 21,9577 ~1.8009
Tdys Idsys D" = Sd212 3.4393 2.0938
= 1d3 1d3 o 6.1090 6.1071 3.4393 2.0938
Tdsr 1dss o 0 0 —4.15 —1.8886
I d-'m- 1dm 21 ]. -932‘}? I -QEDEDE "'"4.1 5 _3 -Bﬂg'ﬁ
S Tdgs Lden 4 3,55484 1,554252 —4.15 —3 8886
o 2512 2512 O | 363376 | 3.630662 —3.27 —3,7509
Tdi 1din a2t 5.25480 5252792 0.93 02978
Tdsn Ldsn 0" 5.33640 5.334830 0.93 0.2978
1 £ 1672 [N 1] ] —£3 5.8
2, 1o 1o 2% 1524.70 1524.71 -83 —5.8
150 157 4" 275241 2752.45 ~5.3 ~5.R
1f2m 1 [ 318933 318999 —8.3 =58
2010 2P 0 0 0 -10,2650 ~11.0960
2p1n 2P R 1.4545 1.4563 —_10.2650 _11.0960
=S Ipya2pin o 2.9424 2.9426 —5.1524 —9.8904
Ni T 0 3.5309 3.5310 _9.4965 —9.9832
£y 1 > 31,8983 1.9018 -9 4965 -9.9837
ST 4 42990 4.3043 -9 4965 —9.9832
Tdey 1desy i 0 0 —0,592] 0,60 |
1dss lden 9+ 1.8873 1.8875 ~(.59]12 —0.60
S Ldes ldea 4 313762 13765 —(,590] {60
Ne Ldas Ldo 0° 3.5763 31.5766 1,9102 4,04
1d3 1dsn a* 3.6164 16165 19106 4.04
25,0 28102 e 4 5900 4 5889 —0.1446 —0.11
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4. Let us illustrate the HAA method effi-
ciency within a framework of a three-particle
shell model on the example of the calcula-
tion of lower excited state energy spectrum
in the “C, "0, “Ca, *™Ni, "Ne nuclei,
which have two valence nucleons in the un-
filled shell. Therefore, in the case " Ne nu-
cleus besides the strong nucleon interaction
we shall take into account the contribution of
Coulomb interaction of valence protons. Ac-
cording to the asymptotic behaviour of
U (R)/R* terms at R— e, considered in

detail in [9,11], the energy spectrum calcula-
tions have been carried out in the following
order, The Wood-Saxon potential parameters
were chosen in such a way that when solving
equation (12) the U/, (R)/R® terms asymp-
totically at R-»e acgording to [9,11],
reached the corresponding isotope level, 1. e
the nucleus which contains one nucleon less
than /X nucleus. The obtained Woods-
Saxon potential parameter data well coin-
cided with parameters, which are contained
in works of another authors [8].

Further, having defined the potential pa-
rameters (23, (3) for each nucleus we found
the potential U, (R)/R* terms and the basis
functions @ (R,£2) by numerical solution of
equation (12) with corresponding boundary
conditions taking into account only the
VL R ) diagonal matrix elements. In

£l by
Fig. 1 the behaviour of the potential

U,(R)/R* terms for each of the nucleon

state configurations are shown. The found
U, (R)/R* terms were substituted in equa-
tion (14} over R in Bhorn-Oppenheimer ap-
proximation (i.e. disregarding non-diagonal
H,(R) and Q. (R) matrix elements) with
the inclusion of boundary conditions (17);
the energy spectrum of low-lying excited
nucleus states was found numerically. The
energy of the ground state of the corre-
sponding nucleus was taken as zero.

The theoretical calculations of the en-
ergy levels of low-lying excited nuclei states
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within the framework of three-particle shell
model are presented in Table 1, and straight
lines represent their locations at the adiabatic
nucleon potential terms of a corresponding
nuclei. For example in case of the 0 nu-
cleus, the positions of the energy levels are
presented in Fig. 1. In this format zero is the
detachment energy of two nucleons of the
corresponding nucleus.

The comparison of the obtained theoreti-
cal calculations on the excited nuclei energy
states with the existing experimental data
[13,14] indicates their fairly good coinci-
dence.

Thus, the introduced adiabatic three-
particle shell model in the potential approach
within the framework of Schrédinger equa-
tion allows cne to describe adequately the
effect of nucleon paring, their angular and
radial correlations leading, in particular, to
the formation of the superfluid states due to
the strong interaction. The analvsis and the
detailed description of the superfiuid nuclear
states in the adiabatic approach is the subject
of our further work.
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[Mpopegeno TeopeTHUHHE OMHC CHEPrETHYHOTO CNEKTpY I0VIREHWX ANSpHMHX
craHip B pamrax afiaBateymol TpuuacTHHEoRo! ofomowkoBol sogeni mopa ®

TEPMIHAK KOMEKTHRHIY SMINHNX, A came rineppanivea R, rinepryTa & § 3Bmuait-
WY chepHUYHHX KyTiB f5.1$ﬂ.}~ i={.2, Hoea MOOSNE TPYHTYETLCA HA NPHIYIIEHH]
Npo BADKPEMITIOBAHICTE PYXY BAISHTHHX HYRNOHIBE HA WEHAKHA pyX No KYTUBHX
suinex 1 aniaGarieami (nosineamil) pyx Basoex rineppanivea R . Breaeno 3pyd-
We ANS OMHCY MOHATIA NOTeHMiaMbxoro Tepma wykaonis U (R). EdexrnexicTs

aniafariuuoro misxogy NPOUTICTPOBAHG Ha NPUKRALL YMCENBHEY poIpaxyHKIs
X - . 1% 13 a2 = J
¢HEPTETHYHOTO CIEKTRY HuaHIX 36ymwenux pisnis xnep  C, " O, ~Ca, " Ni,

" Ne , neranosrena 0GONOHKA AKHX MICTHTb 158 HYKAOHH.
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