# ВУЗЬКОСМУГОВИЙ ОПТИЧНИЙ ФІЛЬТР НА КРИСТАЛІ ТІОГАЛАТУ СРІБЛА

#### Р.О. Надь

### Кафедра прикладної фізики

Пропонується до розгляду вузькосмуговий оптичний фільтр на кристалі тіогалата срібла. Наведено будову і принцип дії фільтра на основі кристалу AgGaS<sub>2</sub>. Проведені вимірювання основних спектральних характерист фільра. Розглянуто кутову апертуру фільтра.

Вивчення ефектів просторової дисперсії в кристалах тіогалату срібла (AgGaS<sub>2</sub>), які володіють спектральним перетином дисперсійних кривих звичайного n<sub>o</sub> і незвичайного  $n_e$  показників заломлення на довжині хвилі  $\lambda_0$ =4974Å (ізотропна точка - IT) при кімнатній температурі, вказує на те, що даний кристал може бути використаний в якості робочого елемента оптичного фільтру. Даний фільтр буде працювати на виділення або поглинання вузької спектральної області з центром, який локалізований при  $\lambda = \lambda_0 [1]$ . Необхідно відзначити, що про можливість створення вузькосмугових оптичних фільтрів на основі кристалів, які володіють інверсією двопроменезаломлення і оптичною активністю, вказувалося в роботах [2, 3], а в роботі [4] говориться про перспективність використання для цієї цілі кристалів тіогалату срібла. Проведені вимірювання показують, що спектральне положення ІТ і обертання кристалла AgGaS<sub>2</sub> залежать від технології отримання кристалів, стехіометрії отриманої сполуки, температури, тиску і інших зовнішніх факторів.

### 1. СТРУКТУРА КРИСТАЛУ AgGaS<sub>2</sub> ТА БУДОВА ФІЛЬТРУ НА ОСНОВІ AgGaS<sub>2</sub>

В даній роботі детально досліджуються спектральні характеристики вузькосмугового оптичного фільтру на основі кристалу AgGaS<sub>2</sub>, проводиться їх аналіз, розглядається будова та принцип дії фільтра. Основою даного фільтру є кристал AgGaS<sub>2</sub> який відноситься до відомих потрійних сполук типу  $A^{I}B^{III}C_{2}^{VI}$ , структура яких вивчена, мають тетраедричне розташування атомів, у кожного з яких є чотири найближчі сусіди, які утворюють більш-менш правильний тетраедр. Структура сполук  $A^{I}B^{III}C_{2}^{VI}$  відноситься до так званого типу халькопірита. В роботі [5] розглянуто особливості структури кристалу тіогалата срібла:

Тіогалат срібла AgGaS<sub>2</sub> кристалізується у структурі халькопірита і описується просторовою групою симетрії  $D_{2d}^{12} - J42d$ . Елементарна комірка містить чотири формульні одиниць. Атоми займають позиції (0,0,0; <sup>1</sup>/<sub>2</sub>, <sup>1</sup>/<sub>2</sub>, <sup>1</sup>/<sub>2</sub>)+

4Ag у позиції (a): (0,0,0; <sup>1</sup>/<sub>2</sub>, <sup>1</sup>/<sub>4</sub>)

4Ga у позиції (b): (0,0, <sup>1</sup>/<sub>2</sub>; 0, <sup>1</sup>/<sub>2</sub>, <sup>3</sup>/<sub>4</sub>)

8S у позиції (d): (x, ¼, ½; x, ¾, ½; ¾, x, ½; ¼, x, ½).

Параметри х атомів сірки складає 0,29, постійна гратки a=5,757, c=10,304Å, тетрагональне стиснення  $\tau \approx 0,21$ .

На рис.1 зображено схематичну будову фільтра на гіротропному кристалі. Даний фільтр складається з 2 – ох поляризаторів між якими розташований кристал AgGaS<sub>2</sub> у вигляді плоскопаралельної, оріентовної пластинки. Товщина кристалу у напрямку поширення випромінювання вибирається такою, щоб забезпечити поворот площини поляризації падаючого світла з довжиною хвилі  $\lambda_0$ =4974Å на 90<sup>0</sup>. Оптична вісь лежить у площині пластинки. Пластинка розміщується між скрещеними поляризаторами, таким чином, щоб оптична вісь кристала була строго паралельна або перпендикулярна напрямку поляризації одного з поляризаторів.



Рис. 1. Схематична будова вузькосмугового оптичного фільтра на кристалі  $AgGaS_2$  при паралельних (а) і скрещених (б) поляризаторах: 1-поляризатор; 2-кристал; 3-аналізатор.

При паралельних поляризаторах (рис. 1,а) фільтр працює на поглинання спектральної області, з центром при  $\lambda_0$ , при скрещених (рис. 1,б) - на пропускання. У подальшому основна увага приділятиметься фільтрам другого типу. Оптимальна товщина кристалу d<sub>0</sub> у фільтрі знаходиться по формулі:

$$d_0 = \frac{\pi}{2\rho_0} \tag{1}$$

де  $\rho_0$  – питоме обертання площини поляризації на довжині хвилі  $\lambda_0$ .

Теоретичні обчислення і експериментальні дослідження показують, що в основі роботи такого фільтру лежить явище природної оптичної активності кристалу AgGaS<sub>2</sub>.

Інтенсивність світла, що проходить через систему поляризатор – кристал-аналізатор (ПКА) з схрещеними поляризаторами, описується виразом:

$$I = I_0 \sin^2\left(\rho_0 d\right) \tag{2}$$

де I- інтенсивність світла, що падає на систему ПКА;  $I_0$  – інтенсивність світла з довжиною хвилі  $\lambda_0$ , що пройшло через систему ПКА.

# 2. ПРИНЦИП ДІЇ ФІЛЬТРУ

Випромінювання, що падає на поляризатор 1 (рис.1,б), після його проходження становиться поляризованим паралельно напрямку його поляризації. Оскільки товщина кристалу d<sub>0</sub> задовільняє умову (1), площина поляризації випромінювання з довжиною хвилі λ<sub>0</sub> після проходження пластинки виявиться повернутою на кут  $90^{0}$  ( $\pi/2$ ). Таким чином після проходження кристалу випромінювання стає поляризованим паралельно головному напрямку поляризатора 3, отже буде ним пропущене. Промені з довжинами хвиль, відмінними від λ<sub>0</sub>, будуть приборкуватися поляризатором 3, оскільки при відході від ізотропної точки виникає лінійне двопроменезаломлення. Тому, спектр прпускання фільтра, характеризується вузькою смугою, максимум якої відповідає довжині хвилі λ<sub>0</sub>. Враховуючи оптимальну товщину кристала  $d_0$  і зв'язок  $\rho(\lambda) = (\pi/\lambda)\delta n(\lambda)$ , де  $\delta n(\lambda)$ - циркулярне двопроменезаломлення, спектральну характеристику фільтра зручно представити у виді:

### 11111111111111111111111

де  $\delta n(\lambda_0)$  і  $\delta n(\lambda)$  – величини циркулярного двопроменезаломлення на довжинах хвиль  $\lambda_0$  і  $\lambda$ ;  $\Delta n(\lambda)$  – величина лінійного двопроменезаломлення на довжині хвилі  $\lambda$ ;

## 3. ЕКПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ ПАРАМЕ-ТРІВ ФІЛЬТРУ

Вони були проведені на фільтрі побудованому на кристалі AgGaS<sub>2</sub>, який був одержаний методом Бріджмена. Оріентація кристалу здійснювалася рентгенівським методом, на

якому була виділена площина [100] і напрямок оптичної вісі в даній площині. Отримані кристали володіють IT на довжині хвилі  $\lambda_0$ =4974Å. Виходячи із визначеного раніше значення питомого обертання площини поляризації на  $\lambda_0$ , яке дорівнювнює 520 град/мм було виготовлено пластинку AgGaS<sub>2</sub> оптимальної товщини  $d_0$ =0,170мм. Провівши відповідні експериментальні дослідження ми отримали спектральну характеристику фільтру на основі кристалу тіогалата срібла яка зображена на рис.2. З даної спектральної характеристики видно що фільтр характеризується вузькою смугою пропускання, максимум якої локалізований на довжині хвилі  $\lambda_0$ =4974Å.



Рис.2. Експериментальна крива спектральної характеристики фільтра на основі AgGaS<sub>2</sub>.

Користуючись виразом (3), можна провести аналіз основних спектральних і кутових характеристик фільтру.

Пропускання фільтра визначається наступними факторами: а) величиною пропускання першого поляризатора; б) втрати пов'язані з поглинанням в кристалі; в) Френелівські втрати інтенсивності. Врахування всіх джерел джерел втрат приводить до того, що максимальне пропускання фільтрів, побудованих на відомих в наш час кристалах, що мають IT, не перевищує 10-20% [2]. Оцінки, однак, показують, що використання просвітляючих покриттів і удосконалення технології отримання високоякісних кристалів дозволяють підняти пропускання до 30-40%. Для нашого фільтра пропускання становить  $T(\lambda_0)=20\%$ .



Рис.3. Кристалографічна система координат і кути *ф* і*θ*, що визначають напрямок поширення випромінювання у кристалі.

Іншою характеристикою фільтра є його вибірковість. У оптичних фільтрів на гіротропних кристалах з ІТ вона визначається спектральним інтервалом з центром при  $\lambda = \lambda_0$ , у межах якого величина лінійного двопроменезаломлення  $|\Delta n(\lambda)|$  не перевищує величини циркулярного двопроменезаломлення бл $(\lambda)$ .

Кількісною характеристикою вибірковості є напівширина  $\Delta\lambda_{1/2}$  виділяємого спектрального контура (ширина на половині висоти) [6]. В нашому випадку вона становить  $\Delta\lambda_{1/2}=13,5$ Å і зображена на рис.2. Слід відмітити, що вимоги, що ставляться до кристалів у відношенні підвищення пропускання і вибірковості фільтра протирічать один одному. Дійсно, чим далі від края поглинання у області прозорості знаходиться IT, тим вище пропускання, але тим менше  $\alpha$  (крутизна дисперсійної кривої,  $\alpha = (d\Delta n/d\lambda)_{\lambda=\lambda 0}$ ) і нижча вибірковість і навпаки [7].

У спектральній області поза околу IT пропускання розглядуваного фільтра характеризується інтерференційним розподілом інтенсивності випромінювання, що проходить через систему ПКА. Воно обумовлене дисперсією лінійного двопроменезаломлення при відході від IT і є паразитним фоном. Амлітуда бокових екстремумів різько зменшується по мірі віддалення від IT. Тому контрасність Y визначається як відношення пропускання у перших бокових максимумах до пропускання на довжині хвилі  $\lambda_0$ , Y=0,11 відн.од.

Крім розглянутих характеристик, одним з найважливіших параметрів оптичного фільтуючого пристрою є кутова апертура. Кутова апертура фільтру визначається залежністю основних характеристик фільтра від кута падіння світла. Із зміною кута падіння змінюються як оптична довжина шляху, так і бп та  $\Delta n$ , і, отже, характеристики фільтра. На практиці приходиться мати справу з протяжними об'єктами які світяться. В зв'язку з цим необхідно знати максимально допустимі кути падіння променів на фільтр, в межах якого він ще ефективно виконує свої функції.

Робоча частота фільтрів які розглядаються, знаходиться за допомогою спектрального положення IT і не залежить від кутів падіння променів, що є їх великою перевагою в порівнянні, наприклад, з інтерференційними фільтрами.

Аналіз кутової апертури проведемо для фільтру, виготовленого з пластинки X – зрізу кристала AgGaS<sub>2</sub>. Позначимо через  $\varphi$  - кут між напрямком проекції променя на площину [100], а через  $\theta$  – кут між напрямком променя у площині падіння і площиною [001] рис.3. Додатні значення кутів  $\varphi$  і  $\theta$  будемо відраховувати проти руху годинникової стрілки від відповідних осей правої системи координат.

Кути  $\varphi$  і  $\theta$  задають напрямок поширення випромінювання всередині кристала. Вони пов'язані з відповідними зовнішніми кутами падіння  $\varphi'$  і  $\theta'$  співвідношеннями:  $sin\varphi' = n(\lambda_0)sin\varphi$  і  $sin\theta' = n(\lambda_0)sin\theta$ , де  $n(\lambda_0) -$  показник заломлення кристала на довжині хвилі  $\lambda_0$ =4974Å. В IT AgGaS<sub>2</sub> показник заломлення  $n_0 = n_e = 2,7$  і при максимально можливих кутах падіння  $\varphi' = \theta' = \pi/2$ , це відповідає направленню в кристалі, яке визначається кутами  $\varphi' = \theta' \approx 22^\circ$ .

Отримані екпериментальні дані зображені на рис. 4.



Рис.4. Залежність пропускання  $T(\lambda_0)$  (1), контрастність Y (2) і вибірковість  $\Delta\lambda_{1/2}(3)$  оптичного фільтра на основі AgGaS<sub>2</sub> від зовнішніх кутів  $\theta'(a)$  і  $\phi'(6)$  падіння світла. Точки експериментальні дані.

Результати екпериментальних досліджень добре узгоджуються з даними теоретичних розрахунків. Якщо обмежитися кутами, у межах яких пропускання  $T(\lambda_0)$  зменшусться, то вони складають  $\pm 90^{\circ}$  і  $\pm 75^{\circ}$  для  $\phi$ ' і  $\theta$ ' відповідно. Контрасність Y при цьому поліпшується, а збільшення вибірковості  $\Delta\lambda_{1/2}$  складає – 6%. Тим не менше, кутова апертура оптичних фільтрів на основі гіротропних кристалів з IT складає  $\pm 45^{\circ}$  і значно перевищує апертуру відомих вузькосмугових інтерференційно – поляризаційних і інтерференційних світлофорів, яка не перевищує декілька градусів ( $3^{\circ} \dots 5^{\circ}$ ) [8].

Отже, можна відзначити, що оптичний фільтр на тіогалаті срібла по своїм параметрам значно перевищує параметри відомих вузькосмугових оптичних фільтрв.

#### ЛІТЕРАТУРА

- 1. Л.М. Сусликов, З.П. Гадьмаши, В.Ю. Сливка. Оптика и спектр, 51, 307, 1987р.
- Л.Е. Соловьев, В.С. Рудаков Вестн.ЛГУ, №16, 170, 1967г.
- 3. Л.Е. Соловьев, В.С Рудаков Вестн.ЛГУ, №4, 23, 1968г.
- 4. А.Х. Зильберштейн, Л.Е. Соловьев Оптика и спектр., 471, 1973г.
- 5. Боднарь И.В., Ворошилва Ю.В. Исследование системы AgGaS<sub>2</sub>-AgGaSe<sub>2</sub>.- мзв. АН СССР, неорган,матер., 1979, т.15, №5, 765с.
- Лебедева В.В. Техніка оптической спектроскопии.- М.: МГУ, 1974г.
- Кизель В.А., Бурков В.И. Гиротропия кристаллов.- М.: Наука, 1980, 304с.
- 8. Зайдель А.Н., Островськая Г.В. Техника и практика спектроскопии.- М.: Наука, 1976г., 392с.