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GENERALIZED PLANE WAVES FOR SCHRODINGER
AND DIRAC PARTICLES ON THE BACKGROUND
OF BOLYAI-LOBACHEVSKY GEOMETRY:
SIMULATING OF A SPECIAL MEDIUM

Bolyai—Lobachevsky geometry substantially affects quantum-mechanical particles,
simulating a medium with special reflecting properties of an ideal mirror.

For Scrodinger particle the problem reduces to a second order differential equation
which can be associated with one-dimensional Schrédinger problem for a particle in

external potential field U (z) =erzz. In quantum mechanics, curved geometry acts

as an effective potential barrier with reflection coefficient R =1. Hyperbolic geometry
simulates a medium that effectively acts as an ideal mirror. Penetration of the particle
into the effective medium, depends on the parameters of quantum solutions

g, k12 + k22 , and the curvature radius o . Similar analysis is performed for the case of

a Dirac spin 1/2 particle; additional to the quantum numbers &, k12 + k22 for the spin 0

particle here is a quantum number related with an extended helicity operator.
Key words: geometry Bolyai—Lobachevsky, plane wave, Schrodinger equation, Dirac

equation, hypergeometric function.

Introduction

It is known that in the field theory of
elementary particles, the basis of plane waves
is of the most use. However, in presence of a
curvature, any common plane wave solutions
do not exist. Therefore, of a special interest are
examples non-Euclidean spaces in which some
analogues of such solutions can be
constructed. In the paper [1], it was shown that
in the Lobachevsky space there are such
solutions for particles with spin 0; also see the
books by Gelfand—Graev-Vilenkin [2], [3]. An
analog of plane waves in a space of constant
positive curvature was studied by Volobuev
[4]. The later treatment of this problem was
given in [5]. Solutions of the plane wave type
for Maxwell’s equations have been considered
in [6]-[9]. In [10], the problem of constructing
solutions of the Dirac equation in the
Lobachevsky space was studied on the base of
the method of squaring; in particular, it was
pointed out the possibility of constructing
solutions of the Dirac plane waves starting
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with Shapiro’s scalar waves. In this paper we
will construct a complete basis of solutions of
the plane wave type for Dirac and Weyl
particles in the Lobachevsky space, applying
the method of separation of the variables in a
special system of quasi-cartesian coordinates
closely related to horospherical coordinates.
To understand the physical meaning of
the system under consideration, it should be
mentioned that Lobachevsky geometry
simulates a medium with special constitutive
relations. The situation being specified in
quasi-cartesian coordinates (X, y, z) was
treated in [9]. Exact solutions of the Maxwell
equations in complex 3-vector form, extended
to curved space models within the tetrad
formalism, have been found in Lobachevsky
space. The problem reduces to a second order
differential equation which can be associated
with an 1-dimensional Schrodinger problem
for a particle in external potential field

U(z)=U,*. In gquantum mechanics, curved

geometry acts as an effective potential barrier
with reflection coefficient R=1; in electro-
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dynamics context results similar to quantum-
mechanical ones arise: the Lobachevsky
geometry simulates a medium that effectively
acts as an ideal mirror. Penetration of the
electromagnetic field into the effective
medium, depends on the parameters of an
electromagnetic wave, frequency o, k +k?,
and the curvature radius p.

In the present paper, that analysis will be
extended to the case of particles with spin 1/2,
described by equations of Dirac and Weyl. The
generalized spinor plane waves can find
application in the analysis of the behavior of
fermions particles on cosmological scales, or
in simulating special media affecting the
spinor particles.

1. On the solutions
of the Schrédinger equation

In the Lobachevsky  space-time

parameterized by quasi-cartesian coordinates

dS? = dt* —e # (dx* +dy?) —dz?;
the element of volume given by dV and the
sign of the z are substantial, in particular when
referring to the probabilistic interpretation of
the wave functions

dW W[ dV = ¥ |* e **dx dy dz.
Let us describe some details of the
parametrization of the space by coordinates
(X, y, z). It is known that this model can be
identified with a branch of hyperboloid in 4-
dimension flat space

U2 —U2 U2 —U2 = p? Uy =+ p? +U°.
Coordinates x, y, z are referred to u, by
relations

u, =xe‘,u,=ye’,

4 =21(E e )+ 04 +y)e 7]

U, = %[(eZ +e )+ (x*+y?)e’] (1.1a)

It is convenient to employ 3-dimensional
Poincaré realization for Lobachevsky space as
an inside part of 3-sphere:
u.
q = ' .00, <+1.  (1.1b)
\/pz +U] +ul+ul
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Quasi-cartesian  coordinates
referred to g; as follows

(xy,2) are

/ A2
x=—h Y= % ,ef = 1-9 . (1.10)
1-q, 1-q, 1-q,
In particular, note that on the axis
q =0,0,=0,ge(-L+1) relations (1.1c)
assume the form
g,—> +Le'—> +00, z—> +o0;
g,—>-Le'——+0,z—> —0. (1.2)
Schrodinger equation in  Riemannian
space [11], in quasi-cartesian coordinates
(1.1a) takes the form
2 2 2
in Ly e226—2+e226—2+
ot 2M OX oy
se22 e QJ\P
oz oz

The variables are separated by the substitution
|\ 7. e—iEt/heiklx eikzy f (Z)

2 d ,
(F—ZE-FE—GZ (klz +k22)J f(Z):O,

(1.3a)

where a dimensionless quantity used
£=2MEp*/h*, p — curvature radius of the

space. Elementary substitution f =e’p(z) in

equation (1.3a) gives a Schrodinger-like
equation
d2
F+g—l—(kf+k22)e22 p(z)=0 (1.3b)
with potential function
U(z) =1+ (k? +k2)e*. (2.3c)

Note that the probabilistic interpretation of the
wave function after the transformation to ¢

reads

dW =W dV =2 dxdydz.  (L.4)

An easily interpretable physical solution for
& >1 is the following: on the left we have the
superposition of two waves, falling from the
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left and reflected. On the right behind the
barrier, the wave function must sharply
decrease to zero.

It should be noted that the case

k,=0, k,=0 is special: the equation (1.3a)
is very much changed because the potential
function disappears

d? d
[F—Zd +8j f(Z):O,

f = e(JiiJTTl)z’ o= e(iiﬁ)z , (1.5)

and the function ¢ is a solutions of the type of

ordinary plane wave.
Let us turn to the general case and in eq.
(2.3a) introduce the variable

JKZ+k2e? = 7,7 & (0,420);

the equation takes the form
d 2
i

with the help of a substitution f =JZF, one
can remove the term with the first derivative

d? &£-3/4
[dzz+ —1]F(Z) 0.

This form makes it easy to find the
asymptotical behavior of solutions

1d &

Z dz 22

Jf(Z) =0; (1.6)

(z—>—0)Z —0,F [ ZV#

f 0 zENET ) e (1.7)

(z—> +0)Z —> +o, F [] &7,
f =Ze'Z, ol e 2 exp(k? +kZe?). (1.8)

We now turn to the construction of exact
solutions of (1.6) in the entire range of
coordinate z . We seek solutions in the form of
f(Z)=2"e* F(Z);at A B chosen according
(for definiteness, we take the minus sign

before the root in the expression for A;
assuming ¢ >1)
A=1-iJe-1, B® =1, (1.9)

the equation (1.6) gives (let us make another
change Z =y/2 and let B=-1) an equation

for the confluent hypergeometric function
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d2Y

dz2
c=2a,a=A-12=12-iJe-1,

f(Z) ya+l/2 7y/2Y(y)

We use two pairs of linearly independent
solutions [12]

+(c— y)——aY 0,
dy

(1.10)

yl—zaq)(l_ a, 2— 2a5 y)a
(1.11)

Y, =d(a,2a,y),Y, =
Y, =¥(a,2a,Y),Y, =e"¥(a,2a,-y).

These pairs of solutions are related by
Kummer linear relations [12]

_I'(1-2a) I'2a-1)

* Irl-a) ' TI(@ 7
_I@- 2a) 1“(2a—1)Y (1.12a)

- a) r@ 2

which after multiplication by y**?e™¥? take
the form

_I'(1-2a) I'2a-1 )
° T@-a) ' TI(@)
] :F(1—2a) - I2a-1) f. (112b)
I'1-a) I'(a)
Note that the solutions Y; and Y, describe the
waves with asymptotic behavior
Z——0,(y—>0)
el
£, [z/kf N kg} ete N,
l+iJ=
f,0 [24/k12+k22] ele"F | (1.13)

Thus, for example, the function Y, (and the
related ¢.) at negative z—— —oo behaves as

a superposition of two plane waves according
to

5 1—1}:(]-1 2a) (2\/k27)1 |\/:l —lJ:lz
F(2a 1)

(1.14)

F( ) (ZM)HIF +i lz

We define the reflection coefficient as the
square modulus of the amplitude ratio in a
superposition of plane waves



HaykoBuii BicHuk Yxropoacskoro yHiBepcurety. Cepig @izuka. Bumyck 32. — 2012

2

Miefi -1z + M+e+i Sle, R — ‘&
M

+

b

_|ra-2a) r) [

. (1.15a)
r'(2a-1) T'(1-a)|

We take into account

1-2a=+2ive—-1,2a—-1=-2iJe+1,
a=12-ive-11-a=12+iJe-1,

then
F(+2|x/ )
- ZM )

r(1/2—|»\/ )|
F(l/2+|«f 1)

We find the behavior of Y, at large .
Using the known asymptotic relation [12]
Y, =Y(a,c,y)ly
we getat z — +oo:
fs _ ya+l/2e—y/2 Ys 0 y1/2e—y/2 0

[ 24k +kZe*)"2 exp(—Jk? + kZe?)

©" =0, (1.16)

=1 (1.15h)

—>exp

Thus, the solution f; describes the expected

situation: wave going from the left is reflected
with probability 1 on the effective barrier;
behind the barrier the solutions sharply
decrease to zero. It is easy to find the critical
point, after which wave function must sharply
decrease

e-1=(k} +k2)e” =z, =1In /kf iz,

in the wusual units, this critical point is
described by the relation
232
2= pln [2MELI -1 1)
(Ky +K3)p

Next we consider the analogue of this
situation for particles with spin 1/2, described
by the relativistic Dirac equation, when
analysis is much more complicated.

2. The Dirac equation, separation
of the variables

We start with the general covariant form
of the Dirac equation [11]; in the coordinate
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system (1.1) we use the diagonal tetrad then
the Dirac equation takes the form

0a 1.2 8 2.2
yo—+ye—+yet—+
ot OX oy

+7° (ﬁ—l}r im}l’ =0.

0z
Note that the addition of —1 about the operator
0, can be removed by substituting ¥ =e‘y .
The following three operators i0,,i0,,i0,

commute with the wave operator: solutions
can be searched in the form

(2.1)

f,(2)
—|gte|k1xe|k2y 2 (Z) )
f;(2)

f.(2)

Using the Dirac matrices in spinor basis, from
(2.1) we find equations for f.(z)

el = (2.2)

“igf, —ike’ f, —k,e'f, —(di—l) f,+imf, =0,
z

—ief, —ike’ f, + ke f, +(di—1) f, +imf, =0,
z

—igf, +ike f, + ke f, +(di—1) f,+imf, =0,
z

—ief, +ike’ f, —k,e’f, _(di_l) f, +imf, =0.
z

(2.3)

There is a generalized helicity operator which

commutes with the operator of the wave

equation:

Zl 8+e 1 0
5 776 N/ay

=)
0z
Using the substitution (2.2) in the
eigenvalues equation X¥ = p¥ we obtain
2 o .. d
k1e fz _lkze fz _l(E_l) fl = pfl’
ke’ f, +ik,e’f, +i(di—1) f, = pf,,
z
ke f, —ik,e’f, —i(i—l) f, = pf,,
dz
ke’ f, +ik,e’ f, +i(di—1) f, = pf,. (2.5)
z
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From equations (2.5) and (2.3), considered
together, it follows a linear homogeneous
system with respect to f;

—igf,—ipf, +imf, =0,
—igf, —ipf, +imf, =0,
—igf +ipf, +imf, =0,

—igf, +ipf, +imf, =0. (2.6)

We find two values for the p and the
corresponding restrictions on the functions f;:

+4/&?

p:

(2.7)
Thus, we have three continuous quantum
number &, k;, k, and one discrete, which

distinguishes the values p=+y&®-m?. In

view of (2.7), from four equations (2.3) we
arrive at two equations for f,, f,

d . . o
(E_l_lp) fi+e’(ik, +k;) f, =0,

d ., . »
(5, ~L+ip) T, —e(ik, ~k;) 1, =0.

(2.8)
Note the symmetry of the equations with
respect to change

f,=1,, p=-p. (2.9)

It is convenient to obtain solutions of
similar equations in the flat space

d . .
(E_Ip) f1+(|k1 +k2) fz :O;

d . .
(E‘Hp) fz _(|k1_k2) fl =0,

(2.10)
so that
1 d .
=— ——ip)f,
2 ik1+k2(dz P,
d2 2 2 2 2
F'FS —-Mm _k1_k2 f]_:O.
(2.11)

Here, there exist two independent solutions
(let k, = +\/g2 -m?*—kZ-kZ)
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Q) _ atikz (1) _ (+ik, —ip) +ikyz
f7 =", =————e
ik, +K,

b

£ _gkz £2) _ _ (—ik, —ip) okt (2.12)
' P ik, +K,
The sign before k, determines the direction of
the wave propagation, the sign of p defines

the state of polarization. Generalized analogue
of these solution are to be investigated in the

hyperbolic space H,.

3. A special case
of the waves along the z -axis

There exists a special case when
k,=0, k, =0:
f,(z)
1 f(z
POt z) =e™ o ). (3.1)
f2(2)
f,(2)

The equations change substantially, and the
problem reduces to

(g—l—ip) f,=0,f,=Ce’e™,

(g ~1+ip)f, =0, f, =C,e’e™.

(3.2)
Solutions more simple to interpret are

1
0

YRR (t,2) =| g — plete™; (3.3a)
m
0
0
1

PPt z)=| o |ee ™. (3.3b)

eE—p

m

Obviously, the factor e* in the solutions will
be compensated when considering any bilinear
structure of the wave functions (with their

subsequent multiplication by w/—g dx dy dz).

4. Construction of solutions
in the general case

Let us turn to (2.8) and introduce a new
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variable [k} +kZe* =Z,Z e (0,+w),

d ] K, +ik;
Z—-1- f+Z f =0, (4.1
( 4 np] sz G
d . k, —ik
Z—-1+ip |f,+Z Lf,=0. (4.1b
[ dz pj 2 , +ik, (4.10)

From (4.1) we get two second order
differential equations for f, and f,:

d>f df (p°+ip+2

7 2 dzl{ -2 |1=0,
(4.2)

d’f, _df, (p°—ip+2 21 -0

a2 “az '\ z o)t
(4.3)

Considering eq. (4.2), let us use a substitution
f(Z)=2"€*F(Z); at A and B chosen
according

A=+ip+1L-ip+2,B=+1, (4.4)

equation for F, becomes simpler (' we use else
one change Z =y/2 and let B=-1), then we
arrive at equation for the confluent
hypergeometric function (for definiteness let it
be A=+ip+1)
d*®
dy?
a=+ip,c=2a=+2ip.

do
y——+(-y)——-ad=0,
dy
(4.5)
Two linearly independent solutions are [12]
RO(y)=2(ac,y),
FP(y)=y~®(@@-c+L2-cy). (46)

Consider the equation (4.3). Using the
above-noted symmetry, we obtain
f,=y*"eV?F,(y), a'=—ip,c’ =-2ip,
FZ(l) = (D(ala Cla y):
=y D@ -c'+12-cy).

F? (4.7)

It is convenient to employ one independent
parameter a:
f, =y *F(y),
Fl(l) (y) = cD(as 2a5 y)a

FP(y) =y *®(l-a,2-2a,y); (4.8a)
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f, =y *e "’ F,(y),
O (y) =d(-a,-2a, ),

F2(y) = y"**®d(1+a,2+2a,y). (4.8b)

The functions f,, f, (note that before

now we did not find possible numerical factors
at them) must be related by the first-order
operators (4.1). These equations relate
functions in the following pairs

FYMN-F2(y).  R2(-F2().
corresponding relative factors are calculated —
the result is

| fl _ M+efy/2y1+a ®(a,2a, ),
f,=e7"?y*?d(a+12+2a,y),
M, =2e" (1+2a);
(4.9)
I f =M e"?y**®d(-a,2-2a,y),
f,=eV?y"?d(-a,-2a,Y),
M_=2e"7 (1-2a),

g [kerik
k, —ik,

Remind that a=ip =+ive?—m?; the sign of
p is associated with the polarization state of
the spinor waves; types | and Il are
supposed to be associated with the directions
of wave propagation: to the left or to the right.

To conclude this section we consider the
limiting process in the constructed solutions to
the case of the flat space. This will allow a
better understanding of the obtained results in
the Lobachevsky space. To this end, we first
need to go to the usual dimensional quantities:

z, McR ER

I=—"M=——,6=—,
R h ch

p=+RJE?/c?h* —M?c?/i’ =Rp,,
PR \/72 afP2+P2
k
_|p_|RpO, c_2a_|2RpO,
y =2k +k’e* = 2RKL(1+X?R3+...)—> 2RK | .

Let us consider the solutions (4.9)
I f =M. e”?y" d(a,2a,y),

(4.10)
where

=2 AR
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f,=e”?y*?d(a+12+2a,y),
M, =[2e™ (1+2a) |;
taking into account
a
—y=RK,,
s y 1

1 a(a+1)
2! c(c+1)
1a(a+l)(a+2)
3 c(c+)(c+2)
we get
e’ =e ™ d(a,2a,y) =™,
e =e ™ da+l2a+2y)=e™,
and further

| f, = M, (2RK &)™ ] g"P
f, = (2RK )*"™™ [] g¥P

1
y? :E(RKL)Z,

1
y2 = g(RKL)B,

(4.11)
Similarly, we find
I f,=e?y"*d(-a,-2a,y)e ™",
f =M e’y *®(1-a,2—2a,y) e ™,

(4.12)
We may conclude that solutions of the

type | (in curved model H,) provide us with
extension for the flat waves in Minkowski

space of the type e™; whereas solutions of
the type Il represent extension for the flat

waves in Minkowski space of the type e ™.

Conclusions

In the paper complete systems of exact
solutions for Schrédinger and Dirac equations
in the hyperbolic space H, are constructed on

the base of the method of separation of the
variables in quasi-cartezian coordinates. An
extended helicity operator is introduced. It is
shown that solutions constructed when
translating to the limit of vanishing curvature
coincide with common plane wave solutions
on Minkowski space going in opposite
z -directions. Results are much the same for
2-component Weyl equation.

Author is grateful to V.M. Red’kov for
encouragement and advices.
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Y3AT'AJIBHEHI TVIOCKI XBWJII VIS YACTUHOK
IIPEATHT'EPA I JIPAKA HA ®OHI 'EOMETPII BOSAI-
JIOBAYEBCBKOI'O

ITokazaHo, mo reometpist bosti-JlobaueBcbkoro poOUTH ICTOTHHI BIUIMB Ha KBaHTOBO-
MEXaHIYHy YaCTHHKY, MOJCIIOIYM  CEPEJOBHINC 31  CIHCHIaJbHUMHU  BiJIOHMBAIOUUMU
BJIACTHUBOCTAMH i/icaibHOTO A3epkaia. s ckamsiproi yactunku [llpeninrepa 3amava 3BesieHa 10
IUQepeHIIiaTbHOTO PIBHIHHS APYTOTO MOPSAAKY, SKE MOXKe OYTH 3IBCTABICHO 3 OJHOMIPHUM
pisnsuEsM [lpeninrepa i YaCTUHKH B 30BHiNTHBOMY ToTeHmiansHomy momi U (2) :UO(-Z‘22 .
Y KBaHTOBI# MeXaHiIll BUKPHUBICHA TEOMETPIisl BUCTYIAE K e(EKTHBHUI MOTCHIIIaTbHUAN Oap'ep
3 Koe(illieHTOM BiIOMBaHHSA R=1. Teometpis Mopmemoe cepemoBuile, ¢EKTHBHO Mil04e SK
izeanbHe a3epkano. I[IpOHUKHEHHS 4YaCTHHOK B e()eKTHBHE CEPEeJOBHUILNE 3aJICKHTh Bij

. . 2, 1,2 . . L
napaMeTpiB XBHJIbOBUX pillleHb &, k1 + k2 , @ TAKOX B pajiycy KpUBU3HU L . AHaJIOriYHUM

aHaJi3 MPOBEACHO Ul JipPaKiBCbKOI YacTMHKHM 31 CHiHOM ‘2. B 1bOMy BHMIaIKy BUHHKAE
JIOJJaTKOBE KBAaHTOBE UHMCJIO, IOB'A3aHE 3 y3araJlbHEHUM OIIEPaTOPOM CIipaIbHOCTI.

KuarouoBi caoBa: reometpis bosi-JlobaueBchkoro, turocka xBwis, piBHsHHsA Llpeninrepa,
piBusaHHEA [lipaka, rinepreoMeTpudHi QyHKIII.
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OBOBIEHHBLIE INIVIOCKHUE BOJIHBI 1A YACTHUI]
HPEAUHI'EPA U TUPAKA HA ®OHE 'EOMETPUNA
BOUAN-JIOBAYEBCKOI'O

ITokazano, uro reomeTpusi bositn—JIo6aueBCKOT0 OKa3bIBACT CYIIECTBEHHOE BIMSHHUE HA
KBAaHTOBO-MEXAHUYECKYIO YacCTUIly, MOJACIUPYSd Cpeay CO CICHUAJIBHBIM OTpaXaroluM
CBOMCTBAMM HJEANbHOro 3epkana. Jns ckamspHoi wactuusl Illpenunrepa 3amaua cBeneHa K
muddepeHInaIEHOMY ypaBHEHHIO BTOPOTO IOPSIJIKA, KOTOPOE MOXKET OBITh COIOCTABIIEHO C
onHOMepHbIM ypaBHeHueM IlIpenuHrepa s uyacTHLEI BO BHEIIHEM IOTEHLUAIBHOM IIONE

22 .
U(2) =U,e”. B KBaHTOBOHi MEXaHHKEC HCKPHBICHHAS ICOMETPHS BBICTYNIACT Kak

3 GeKTHBHEIH TOTEHIMANBHEI Oapeep ¢ KodhdummenTom otpaxkenns R =1. T'eomerpus
Mojienupyer cpeny, 3(OGeKTHBHO NEUCTBYIONIYI0 Kak HJealnbHOE 3epKajio. [IpoHHKHOBEHHE
. 2 2
yactul B 3(QQeKTUBHYIO Cpely 3aBUCHT OT [apaMeTpoB BOJHOBBIX pewenuii &, K™ +K;, a
TaKKe Paflyca KPUBU3HBI O . AHAJIOTUYHBIA aHANU3 NPOBEIEH IS AUPAKOBCKOH 4acTUIBI CO

COMHOM ‘52, B OTOM CiIydae BO3HHKACT JOMOJHHUTEIHHOE KBAHTOBOE UHCIIO, CBA3aHHOE C
0000IIIEHHBIM OTIEPATOPOM CITUPATEHOCTH.

KiroueBble ciaoBa: reomeTpus bosiin—JlobaueBckoro, IUIOCKas BOJHA, YpaBHEHHE
penunrepa, ypaBaeHue Jupaka, rurnepreoMeTpuieckue GyHKINH.
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