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THE SYSTEM OF THE PARTICLESIN THE MAGNETIC
FIELD ON THE BACKGROUND LOBACHEVSKY SPACE

In this paper we have considered kinetic equatifamsthe one-point distribution
function on the background Lobachevsky space inethyglic cylindrical, cylindrical
and hyperbolic horospheric coordinates with theffectent uniform magnetic fields,
that are similar in the flat space. Some solutiohkinetic equations have been found
for equilibrium state and they have been comparig selutions for kinetic equation in
the flat space.
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Introduction For describing the entirety of particles, we
can use the random function which was
It has been discovered recently that there is introduced by Klimontovich [2] and which can
intergalactic magnetic field. The induction of be written as
this magnetic field has been measured S
experimentally [1]. It might be interesting to ~ ®(x', p’) =
study the behavior of particle system in some N i A j
cosmological models with magnetic field. = 215 (X = X4 (8)0 (P’ = P, ()ds,
We havestudied kinetic equations for the -
one-point distribution function in the uniform  \wherea=1..N - are numbers of particles)* -
magnetic field on the background Lobachevs- s the four-dimensional delta functiods - is
ky space. Kinetic equations have been the space-time interval.

formulated  in  hyperbolic  cylindrical, Using a covariant Liouville equation and
cylindrical ~and  hyperbolic  horospheric  equations of motion in Lobachevsky space

coordinates with different magnetic fields. \ith electromagnetic field, the collisionless
Solutions for these kinetic equations have been kinetic equation for the random function (1)

considered for equilibrium state. takes the form [3]
We also presume that the results of this
research might be applicable for plasma in the . 0P(X, p')  ad(X, p')
nanostructures. P50+ ap
(2)
Kinetic equation for collisionless particlesin x(— My pza) +EFippéa)j =0.
the constant electromagnetic field on the c

k L h
background L obachevsky space After averaging the random function

Let us consider particles which are ®(X,p’) across the  configurations
characterized by the same masscoordinates (ensemble), we obtain the distribution function
x'and momentap’ (where Latin indices, j R D
and so on run over the four space-time (@(x',p"))=N(X,p"). 3)
coordinate labeld, 2, 3, 4, with x* the time The

) invariant volume in Lobachevsky
coordinate).
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space-time can be introduced a¥, = Kinetic equationsin Lobachevsky spacein
ifferent inat
= j\/@d“X :J'\/@d)(ldxzdxgdx4 =[dX and the different coordinates

invariant volume of momentum spaceMs = 1) We consider a kinetic equation for

Robertson-Walker metrics with negative
:j\/Hd“p:de, where g — is the spatial curvature (Lobachevsky space) in
hyperbolic cylindrical coordinates. The

determinant of the metric tensor [4]. interval for this metrics takes the form

Let us express one-point distribution

function in terms of a random function ds? = c2dt? -
o (7)
R CICHD) — a®(cosif z(dr? + sinh? rdg?) + dz?),
p(x,p)=—"". (4)
N wherea - is a constant scale factor.

External field is a uniform magnetic field,
which in cylindrical coordinates can be written

in terms of4 -potential A as [6]

Note that[o(x',p')d=dP is a number of
particles in d volume with momentum

within the small rangelP .
The one-point  distribution  function A =0 A =0

o(x',p") in four-dimensional space-time can , (8)
be expressed in terms of a classical A, =-cBa’(coshr -1, A =0.

%
. . . . a ’B
distribution functionp, (x, p~.t) [5] Expressing electromagnetic tensor for (8),

D and Christoffel symbols for (7), Kkinetic
p(x,p’) = equation (6) can be rewritten as
0p_ 40P ap

- - (5)
= oy (X', 3G9 p, P, —MC)O(P,), gdp  .0p .
———+p —=+p"—=—+p +sinhr —

where Greek indicesr, 5 etc., run over the ¢ ot or 0z 0¢ op
three spatial coordinate labels, takerl g, 3, x( p’Be _2tanhzp’p' +(p¢)2coshr] N
and ©(p,) is the Heaviside function coslif z sinhr

.0 . _
0, whenp, <0; + coshzsmhza—r'?z((p )2 +sink?r (p¢)2)_ )
1, whenp, >0. o

- 2cothr 9 p' p? - 2cothr
op?

o(p,) = {
o
¢
The delta function in (5) provides nonzero op
value for classical distribution function only ><(tanhz p’p’ N Bep' j _

on mass-shelg™p, p = m*c’. cothr  2coshr cosH z

Suppose that external electromagnetic field _ . .
and background metrics are not depended onWhere € - is the particle energyo - is a
the state of particles. Hence, (2) after classical distribution function which depends

integrating overt and averaging across the on three momentum, time and three spatial

configurations (ensemble), takes the form coordinates.
' ' 2) By analogy with the first case, let us
. 0p(x', p*) - ap(x', p*) N consider the same metrics in cylindrical
(a) o Pa) ax” coordinates. The interval for this case takes the
4 form
€ ap(xl ’ pﬁ) v 4
' c op” (Fvﬂ P + Fd’ p<a))_ (6) ds® =c’dt® -
; 2 2 . 2 2 2 (10)
(X p°) 4« —a’(dr? +sinh*r d¢” + cost r dz*).
-/ Py Py = 0.
op” e In this cylindrical coordinates, the uniform
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magnetic field is written as Note that the magnetic field in the
hyperbolic cylindrical coordinates can’'t be
A =0, A =0 equated with magnetic field in the cylindrical

(11) coordinates due to coordinates or gauge
transformation [8]. A similar situation is for

field in the horospheric coordinates, this field
can't be equated with magnetic fields in other

A

, =—cBa’In(coshr), A =0.

Then the kinetic equation takes the form

£dp 9p L 9p 5 0D tyvo coordinates._H_owever, all these magnet.ic
—+p —+tp —+p —+ fields become similar when the curvature is
c ot or 0z ¢ null.
+a_p B t h 4 + zy2 + . . . .
90" (Bey, tanhr p™ +(p*)") Solution of kinetic equation
P for equilibrium state
o) .
+—'0rcoshr sinhr(p’)? - (12) The entropy flux vector for a system of
op particles can be expressed in terms of
dp distribution function as [9]
—Z;tanhr p' p° -
p i
S =~ck, J@p(lnp—l)d?’p. (16)
dp [ Beyp' :
- '[; ”I_O +2p"p? cothr |=0. _
dp” | coshr sinhr For equilibrium state, we haves; = ,0

, . hence we obtain the expression
3) The same calculations we applied to the

horospheric coordinates p(X, p;{)p(xi, p;i) = p(X, plﬂf (X, p;f ) (17)
2 _ 242 _ ,
ds” =cdt (13) where momenta with indexlw, «2'» mean
2 -2z 2 2 2 2
—a“(e " (dr” +r°dg”) +dz°). the initial state, momenta with indexi'«,
«1"» mean the finite state.

Note that contribution from elastic collision
to kinetic equation for equilibrium state is

The vector potential of the uniform
magnetic field in horospheric coordinates
takes the form

vanishing.
A =0, A =0, A general solution for our case has the form
[10]
-cBa’r? (14)
A, =—— A=0
2 _ k i € ik
p—Cexp{ﬂ—bi(x )(p +—A (X ))} (18)
For this case the kinetic equation is written ¢
as
where b (xk) - are arbitrary parameters which
£0p 0P, pza_,0+ p¢0_,0+ depend on coordinates,C - is the
c ot or 0z 0¢ normalization parametery - is a constant
00 22 4 o2 L which can be identified with the chemical
+$(Be(a)re p*+r(p")°+2p'p )_ potential.
(15) For the metric tensorg; and external
_a_'o(e_zz( r)2+r2e_22( ¢)2)_a_p . .
op P P op’ electromagnetic field A, vectors b must

satisfy the conditions

27 T r 9
X(B%e P pprpr +2PP jzo_
r r

?A =0, (?gij =0, (19)
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where %\D is the Lie derivative with respect to

b . Therefore vectory are Killing vectors for
metrics g; and electromagnetic field, .

For homogeneous, isotropic, stationary
space and constant external field we always
can choose vectorhh in the form
b ={ 0,001}. Hence, the solutions of

equations (9), (12) and (15) can be written as
(chemical potential is put in the normalization
parameter C)

c\/cosh2 z[( p J2+sinh2 r( p¢)2}+( pZJ2+m2c2

p =Ce a7 (20)
_cJ(pr)2+sinh2r(p¢)2 +coshzr(pz)2+m2c2

p,=Ce 87 (21)
_c\/e_zz(pr )2 —27 2(p¢) (pz)2+m2c2

p3=Ce el (22)

The number of Killing vectordy depends

on space symmetry and symmetry of the
external field. Space with constant curvature
has maximum number of Killing vectors

+ . .
y , for n-dimensional space.

Let us consider only spatial part,
Lobachevsky space in hyperbolic cylindrical
coordinates without external field

% = (coslIt z(dr? +sini* rd¢?®) + dz*). (23)
There are exist six linearly independent

Killing vectors, which satisfy (19). In
hyperbolic cylindrical coordinates they are

tanhzsing }

sinhr

brl” = {—coshr tanhzcosg, sinhr cosg,

tanhzcosg
sinhr

br 2[7 = {—coshr tanhzsing, sinhr sing, —

br3” ={o01},

(24)
btla :{ sing, O, cos¢cothr} ,

bt2” ={ cosg, 0, —sin¢cothr} ,

bt3a = {—sinhr 1- ];]2 , coshr, 0} .
coshf z

When the curvature is null, Killing vectors
take the form
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brl”‘—{ 2084, T cosf, ZS'“"’}
S )
br3"*={ 001},
btl"‘:{sinqﬁ, 0 M},
IO
bt3""={ 0,1,0}.

(25)

Vectors btl” ; bt2°" and bt3" ° are
provided by translation symmetry, vectors
br1°", br2°" and br3” " are provided by
rotation symmetry in the flat space.

If we place vectors (24) in general solution
(18) we will take six linearly independent
solutions of the kinetic equation (9) without
external magnetic field.

The external field and metrics for every
case that has been considered above have the
same symmetry of rotation around axig~or
this symmetry a Killing vectolh exists that
satisfies the conditions (19). Using Killing

vectors (24) solutions of kinetics equations (9),
(12) and (15) can be written as

p? cost? zsinh? r+e—B(coshr -1)
c

p,=Ce et . (26)
) p? sinh?2r+£2 In[ (coshr)]
pr2 =Ce kBT ' (27)
] p¢e_22r2+e—c8§
ps=Ce ‘& (28)

For a case when the curvature is null,
solutions (20)-(22) will become the similar
solution of kinetic equation, which describe
the one-point distribution function in a flat
space. In a flat space, there also exists a
solution connected with translation along axis
z. For Lobachevsky space a similar solution
exists only for the second case that is
described by cylindrical coordinates with
magnetic field (11). This solution has the form

_ pzcoshzr
— Ce kT

pzz (29)

For hyperbolic cylindrical and hyperbolic
horospheric coordinates with their magnetic
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fields Killing vectors or linear combination of
these vectors, which satisfy (19) except (26)
and (28) don't exist.

For flat space, solutions (20)-(22) become
the relativistic Maxwell distribution. For a
non-relativistic case, solutions (20)-(22) take
the form

cost? z[(pr )2 +sinh? r(p¢ )Z}L(pz)z

p=Ce 2mkgT . (30)
_(pr )2 +sinh? r(p¢ )2 +cost? r(pz)2

0, = Ce 2mkgT , (31)
_e—ZZ(pr )2+e—22r2(p¢)2 +(pz)2

p3=Ce 2mkgT (32)

The expressions (20)-(22) are more convenient
for the following physical applications among
all solutions which was developed above.
They are provides the well known physical
limits namely: the relativistic Maxwell
distribution and non relativistic Maxwell
distributions in the curved and flat spaces. In
the expressions (20)-(22) not be included
magnetic field manifestly. However evidently
the magnetic field arise in these expressions

when we take in to account possibility of the
magnetic moments of particles.

Conclusion

In this work we have studied some
solutions of kinetic equations for one-point
distribution function on the background
Lobachevsky space with uniform magnetic
field for equilibrium state. For each case we
have found a solution which will become the
relativistic Maxwell distribution when the
curvature of space is null.

And for the second case with cylindrical
coordinates, we have found two solutions that
are connected with symmetry of the magnetic
field (translation along axiz and rotation
around axisz). Similar solutions exist in flat

space.
For the first and third cases in hyperbolic
cylindrical and hyperbolic  horospheric

coordinates with their magnetic fields, only
one solution has been found which
corresponds by symmetry of rotation around
axis z. The solution, which is connected with
translation along axig, does not exist in the
first and third cases but appears in flat space.
The same symmetric properties appeared in
the solution of quantum-mechanical problems

[8].

REFERENCES

1. Ando S., Kusenko A. Evidence for 6. Bogush A.A., Redkov V.M., Kry-
Gamma-Ray Halos Around Active lov G.G. Schr'odinger particle in
Galactic  Nuclei and the  First magnetic and electric fields in
Measurement of Intergalactic Magnetic Lobachevsky and Riemann spaces,
Fields // arXiv:1005.1924v2 [astro- Nonlinear Phenom.Complex Syst. 11
ph.HE] 2 Sep 2010. (2008), 403-416.

2. Kaumonrosud 0. JI. JKOT®, 38,¢.1212, 7. Kurochkin  Yu., Otchik V. and
1960. Ovsiyuk E., Quantum mechanical particle

3. UYepuukoB H.A., Kunernueckoe ypaBHe- in magnetic field in the Lobachevsky
HUEC JUISI PENATUBUCTCKOIO Ta3a B space. Proceedings of F&ANS 2010
IPOM3BOJILHOM TIPaBUTAIIMOHHOM Toje // Conference School, 2010, P. 48-54.
JAH CCCP-1962T.144,¢e1. C. 89-92. 8. Kypoukun FJ.A., Oscuiok EM. O

4. Stewart J.M. Non-Equilibrium Relativis- JBM)KEHUH  3apSDKEHHOM — YacTHIBI B
tic Kinetic Theory, Lecture notes in MarHUTHOM TOJ€ B  TPOCTPAHCTBE
Physics 10, Springer-Verlag, Berlin, JloGauesckoro. - Munck. 2010. - 28c.-
1971. Wucturyr ¢usuku um. b.M.Crenanosa.

5. 3axapoB A.B. Makpockomnuueckasi rpaBu- [Ipenpunt, 747.

tarust, M.: SIayc-K, 2000.

131



Haykoswuii BicHuk Y kropojacbkoro yHiBepcuteTy. Cepist dizuka. Bunyck 32. — 2012

9. Ehlers J. General Relativity and Kinetic Fermi ed. Sachs R. K., Academic Press,
Theory B xuure General Relativity and New York, 1971.
Cosmology, proceedings of course 47 of 10. Chernikov N.A. Acta phys. Polon. 23,
the International School of Physics Enrico (1963).629.

Crarrs Hanpidnuia go penakmii 20.06.2012

10.A. Kypoukin®, LIO. Pu6ax

Yncruryr ¢izuxn Hanionansroi akagemii Hayk Bimopyci, im. B.l. Cremanosa
[Tpocnext Hezanexuocti, 68, 220072Minchk, binopyck

e-mail: yukuroch@dragon.bas-net.by

2Binopycm(iﬁ Jep’KaBHUH YHIBEpCHTET, Kadeapa TeOpeTHIHOI (Pi3uku Ta acTpodi3uku
[Mpocnext Hezanexnocti, 4, 22003QVliHchK, binopychk

CUCTEMA YACTUHOK Y MATHITHOMY MIOJII HA
OOHI ITPOCTOPY JTOBAYEBCBKOI'O

VY wiit cTarTi pO3rISIHYTO KIHETWYHI PIBHSAHHS JUIS OZHOTOYKOBOI (DYHKIIT po3noaiLy
Ha Qomni npocropy JlobaueBcbKOTo B rinepOONiYHNX, HUIIHAPUYHUX, LMWIIHAPHIHUX 1
rinepOoiYHNX TOprCHEPUIHNX KOOPAMHATAX 3 iX PI3HUMH OJHOPIIHUMH MarHiTHUMHU
MOJIIMH, SIKI TIOJIOHI1 B TUIOCKOMY TIpocTopi. Jleski po3B'sI3KM KIHETUYHOTO PIBHSHHS
Oynu 3HAWIEHi a1 PiBHOBAXKHOTO CTaHy, 1 BOHM OYJM IOPIBHSIHI 3 PO3B'I3KaMHU
KIHETHYHOTO PiBHSHHS y TFIOCKOMY TIPOCTOPI.

Kurouosi cioBa: nipoctip JlobadeBChKOT0, KIHETUIHE PiBHSHHS, OJTHOPiTHE MarHiTHE
mosie, Bekrop Kimtinra.
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CUCTEMA YACTUL B MAT'HUTHOM ITIOJIE HA ®OHE
IHPOCTPAHCTBA JTOBAYEBCKOI'O

B 3710l cTaThe pacCMOTPEHbI KWHETHUECKHE YPABHEHUsI ISl OJHOTOUYCUHOM (YHKIMN
pacnpenenenuss Ha (QoHe TpocTpaHcTBa JloOadeBCKOro B THUNEPOOTUIECKHX,
UMIHHIPUYECKUX,  LMJIHHIAPUYECKHMX M TUHOEPOOIHYECKHX  OpHUOC(EpHUYECKUX
KOOpJMHATAX C HMX pPa3iUYHBIMH OJHOPOJHBIMH MArHUTHBIMH TOJSIMH, KOTOpBIC
MOJIOOHBI B TUIOCKOM IMPOCTpaHCcTBe. HEKOTOPbhIE peleHUs] KHHETHYECKOTO ypaBHEHHS
ObUTM HAWJCHBI JJISI PABHOBECHOTO COCTOSIHHS, M OHM OBUIM CPaBHCHBI C PCIICHUSIMU
KHHETHYCCKOTO YPAaBHECHUS B IUIOCKOM MPOCTPAHCTBE.

KaroueBble ciaoBa: mnpocTpaHcTBO JI00a4eBCKOrO, KHHETHYCCKOE YpaBHCHHE,
OJIHOPOJTHOE MarHUTHOE T0JIe, BekTop KuumHra.
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