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ON THE GROUP-THEORETICAL FOUNDATIONS FOR 
FERMI – BOSE DUALITY OF THE SPINOR FIELD. 

SOLUTIONS AND CONSERVATION LAWS 
 

The property of Fermi – Bose duality of the Dirac equation with nonzero mass is 
proved on the basis of generalized Clifford – Dirac algebra and group-theoretical analysis 
of the spinor field. The Foldy – Wouthuysen representation is used as a starting ground 
for consideration and the results for standard Dirac formalism are proved to be the simple 
consequences of such consideration. It is shown that the Dirac equation can describe not 
only fermionic but also the bosonic states. The proof of our assertion is given on the 
example of the existence of bosonic symmetries and solutions of the Dirac equation. 
Furthermore, the bosonic conservation laws are proved to be the consequences of the 
Dirac equation. 

Key words: the spinor field, the Dirac equation, the Foldy – Wouthuysen 
representation, fermions, bosons. 

 
1. Introduction 

 

The Fermi – Bose (FB) duality of the 
spinor field has been mentioned at first by L. 
Foldy [1] The extended consideration has 
been given in [2]. P. Garbaczewski proved [2] 

that the Fock space ( )F 3,M
HH  over the 

quantum mechanical space 3 M
2L (R ) ⊗⊗C  of 

the particle, which is described by the field 
N: M(1, N)φ ⊗→ C , allows to fulfill the dual, 

Fermi – Bose (FB), quantization of the field 
φ  in FH . And both the canonical 
commutation relations (CCR) and 
anticommutation relations (CAR) were used 
for the realization of the above mentioned 
quantization. Moreover, for the both types of 
quantization the uniqueness of the vacuum in 

FH  was proved. The dual FB quantization 
was illustrated for different examples and in 
the spaces M(1, N)  of arbitrary dimensions. 
The massless spinor field was considered in 
details [2]. 

In our publications the consideration 
of the FB duality conception of the field was 
extended by application of the group-
theoretical approach for the problem (FB 

duality was often called by us as the 
relationship between the fields of integer and 
half-integer spins, see e. g. [3, 4] and 
references therein). As a first step we have 
considered in details the case of massless 
Dirac equation. Both Fermi and Bose local 
representations of the universal covering 

SL(2,C)⊃ =P L  of proper ortochronous 

Poincare group P L SO(1,3)↑ ↑
+ +⊃ = , with 

respect to which the Dirac equation is 
invariant, were found. The same was realized 
[3] for the slightly generalized original 
Maxwell equations, in which the complex 
valued 4-object ( ) ( ) ( )x E x iH x= −E  of field 
strengths is the tensor-scalar (s=1,0) P -
covariant. Recently [5] we were able to 
extend our consideration for the Dirac 
equation with nonzero mass. 

 Here we consider the dual (fermionic 
and bosonic) symmetries [5] and solutions [6] 
of the Dirac (Foldy – Wouthuysen (FW) [7]) 
equation with nonzero mass and FB 
conservation laws for the spinor field. We 
presented in details the corresponding 
quantum mechanical stationary complete sets 
of operators of FB physical quantities. It 
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allows us to demonstrate the statistical aspect 
of the spinor field FB duality. 
 The FW representation [7] is used as a 
starting ground for consideration and the 
results for standard Dirac formalism are 
proved to be the simple consequences of such 
consideration. In the FW representation the 
additional symmetries have the evident simple 
form in comparison with the symmetries in 
the standard Pauli – Dirac (PD) representation 
(fermionic spin as a symmetry operator is a 
good example). Therefore, start from the FW 
representation enabled us to find the new 
additional conservation laws (CL) even for 
the standard spinor solutions of the Dirac 
equation. On the basis of the bosonic 
solutions [6] of the FW equation not only new 
but an unexpected bosonic CL for the Dirac 
field are found. All the results, which are 
proved in FW representation, are translated 
very easy in the PD representation by the help 
of FW transformation [7]. 
 In order to derive the CL on the basis 
of the Noether theorem one needs to explore 
the Lagrange approach and the Lagrange 
function. The Lagrange approach for the 
spinor field in FW representation has been 
suggested in [8, 9] in the terms of infinite 
order derivatives. Our desire to have ordinary 
type Lagrange approach gives the 
consideration in [10] and here of the new 
Lagrange function for the spinor field in FW 
representation. 
 For our purposes we use the 
mathematical formalism of the extended real 
Clifford – Dirac (ERCD) algebra and proper 
ERCD algebra [5]. Such generalization of the 
standard Clifford – Dirac (CD) algebra 
enabled us [5] to prove the bosonic 
symmetries of the FW and Dirac equation 
with nonzero mass. 
 The property of FB duality of the 
spinor field was the subject of our 5 reports 
on the conference, where step by step this 
duality was demonstrated on the examples of 
symmetry, solutions and CL. Therefore, this 
paper covers the material not only from our 
abstract [11] but also from the abstracts [12–
15]. Thus, we present below the brief review 
of our results, which were reported on the 
conference. 
 In Sec. 3 bosonic spin s=(1,0) 

Poincare symmetry of the Foldy – 
Wouthuysen and Dirac equations is presented 
briefly. 
 Sec. 4 gives the possibility to compare 
the fermionic and bosonic solutions of the 
FW (Dirac) equation. 
 In Sec. 5 the brief consideration of the 
Lagrange approach for the spinor field in FW 
representation is presented. On this basis the 
examples of both fermionic and bosonic 
conservation laws for the Dirac theory are 
given. 
 In Sec. 6 the main conclusions are 
discussed. 
 

2. Notations and definitions 
 

The system of units 1c= =ℏ  and metric 
( ) ( )g g µν= = + − −− , a g aµ µν

ν= , are taken. 

Here the Greek indices are changed in the 
region 0,1,2,3 0,3= , Latin – 1,3, the summation 
over the twice repeated index is implied. 

Our consideration is fulfilled in the 
rigged Hilbert space 3,4 3,4 3,4,×⊂ ⊂S H S  where 

3,4
H  is given by 
 

3,4 3 4
2

23 4 3

L (R ) { ( ) :

R ;  ( , ) },  0,1,2,3,d x t x

αφ φ

φ α

⊗

⊗

= ⊗ = ≡

→ < ∞ =∫
�

H C

C
(1) 

 
and symbol «×» in 3,4×

S  means, that the space 
of the Schwartz generalized functions 3,4×

S  is 
conjugated to the Schwartz test function space 

3,4
S  by the corresponding topology. The 
application of the rigged Hilbert space allows 
one to reproduce a detailed consideration of a 
field theory in mathematically correct form. 
 For the purposes connected with 
physics it is useful to consider the 
corresponding groups and algebras with real 
parameters (e. q. the parameters 

( ),  ( )a aµ µνω ω= =  of the translations and 

rotations for the group P L SO(1,3)↑ ↑
+ +⊃ =  are 

real). Therefore, corresponding generators are 
anti-Hermitian. The mathematical correctness 
of such choice of generators is verified in [16, 
17]. 

The ordinary CD algebra is considered 
here as the algebra of 44×  Dirac matrices in 
the standard PD representation with the 
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standard 22×  Pauli matrices in their most 
extended explicit forms. 

We consider the standard 16-dimensional 
CD algebra of the µγ  matrices as a real one 
and add the imaginary unit 1i = −  together 
with the operator С of complex conjugation 
(the involution operator in the space 4⊗

C ) into 
the set of the CD algebra possible generators. 
It enabled us to extend the standard CD 
algebra up to the 64-dimensional extended 
real CD algebra (ERCD algebra of [5]). Here 
the subalgebras of the ERCD algebra are 
considered briefly. The most important are the 
representations in 4⊗

C  of the 29-dimensional 
proper ERCD algebra SO(8) spanned on orts 
 

 

1 2 3 4 0 1 2 3

5 1 3 6 1 3 7 0

,  ,  ,  ,

,  ,  .C i C i

γ γ γ γ γ γ γ γ
γ γ γ γ γ γ γ γ

≡
≡ ≡ ≡

  (2) 

 
The generators (2) satisfy the 
anticommutation relations [1] 
 

              

A B B A AB2 ;

A,B 1,2,...,7 1,7,

γ γ γ γ δ+ = −

= ≡
             (3) 

 
and the generators of proper ERCD algebra 
(together with unit ort we have 29 

independent orts )2 ,I( B
~

A
~

B
~

A
~

s=α ) 
 

AB AB A B A8 8A A1 1
{ [ , ],  },

4 2

A,B=1,8,                                                  (4)

s s s sγ γ γ= ≡ = − =ɶ ɶ

ɶ ɶ

 
satisfy the commutation relations of SO(8) 
algebra 
 

    

AB CD AC BD CB DA

BD AC DA CB

[ , ]s s s s

s s

δ δ
δ δ

= +

+ +

ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ .    (5) 

 
Namely the proper ERCD algebra SO(8), 

given by the 29 orts (4), is our [5] direct 
generalization of a standard 16-dimensional 
CD algebra. It is also the basis for our dual 
FB consideration of a spinor field, which 
enabled us to prove the additional bosonic 
properties of this field. For the physical 

applications we consider the realizations of 
the proper ERCD algebra in the field space 

4 4,4(M(1,3))× ⊗ ×⊗ ≡S C S  of the Schwartz 
generalized functions and in the quantum 

mechanical Hilbert space 3,4
H  (1). These 

realizations are found with the help of 
transformations SO(8) ,  SO(8) ,V V v v+ −  where 
the operators of transformation have the form 
 

 

2

2

2
2

I 0
,  ;

0 I2 ( )

1 0
,  I ,  1,2,3.

0 1

i m
V v

Cm

m

γ ω
ω ω

ω

± ± ∂ + +≡ ≡
+

≡ −∆ + ≡ =

ℓ

ℓ

⌢

⌢ ⌢

⌢
ℓ

 (6) 

 
We put into consideration ERCD algebra 

(64 orts) and proper ERCD algebra (29 orts) 
into the FW representation of the spinor field 
[7] (advantages in comparison with the 
standard Dirac equation in definitions of 
coordinate, velocity and spin operators are 
well known from [7]). In this representation 
the equation for the spinor field (the FW 
equation) has the form 
 

     
0 2

0

3,4

( ) ( ) 0;   ,

M(1,3),  ;

i x m

x

γ ω φ ω
φ

∂ + = ≡ −∆ +

∈ ∈H
      (7) 

 

and is linked with the Dirac equation 
 

0 D D( ) ( ) 0,  ,iH x H p mψ α β∂ + = ≡ ⋅ +� �
   (8) 

 
by the FW transformation V ± : 
 

        
0

( ) ( ),  ( ) ( ),

.

x V x x V x

V V p m

φ ψ ψ φ
γ ω α β

− +

+ −

= =
= ⋅ +� �        (9) 

 

Below the ERCD algebra and proper 
ERCD algebra (4) are essentially used in our 
proofs of bosonic properties of the Dirac and 
FW equations. 

 
3. Bosonic spin s=(1,0) symmetry of the 

Foldy – Wouthuysen and Dirac equations 
 

We have found in [5] different bosonic 
symmetries of the FW equation: (i) 
irreducible vector (1/2,1/2) and reducible 
tensor-scalar (1,0) (0,0)⊕  representations of 
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the SO(1,3) L↑+=  algebra of the Lorenz group, 
(ii) the representation of the universal 
covering SL(2,C)⊃ =P L  of proper 
ortochronous Poincare group 

P L SO(1,3)↑ ↑
+ +⊃ = , with respect to which the 

Dirac (FW) equation is invariant. 
Below we demonstrate briefly the example 

of the construction of the Lie algebra of the 
bosonic spin (1,0) representation of the 
Poincare group SL(2,C)⊃ =P L , with 
respect to which the FW (Dirac) equation is 
invariant. Namely the representations of this 
group are important to theoretical physics. 

The fundamental assertion is that 
subalgebra SO(6) of proper ERCD algebra 
(4), which is determined by the operators 

 

       
AB AB{I,  2 },  A,B 1,6,sα = =       (10) 

       
AB AB A B1

{ } { [ , ]}.
4

s s γ γ= ≡      (11) 

 
is the algebra of invariance of the Dirac 
equation in the FW representation (7) (in (11) 
the six matrices 

A 1 2 3 4 5 6{ } { , , , , , }γ γ γ γ γ γ γ≡  are 
known from (2)). Algebra SO(6) contains two 
different realizations of SU(2) algebra for the 
spin s=1/2 doublet. By taking the sum of the 
two independent sets of SU(2) generators 
from (11) one can obtain the SU(2) generators 
of spin s=(1,0) multiplet, which generate the 
transformation of invariance of the FW 
equation (7). Transformation  
 

      1

1 1

2 0 0 0

1 0 0 2 0 ,
2 0 0 1

0 0 1

2 0 0 0

0 01
,

2 0 2 0 0

0 0 1 1

1,

i CW
C

C

C C
W

i C

WW W W

−

− −

=
−
− −

− −
=

−

= =

     (12) 

 
translates these generators of spin s=(1,0) 

multiplet into the bosonic representation  
 

1

2

33 2

0 0 0

0 0 01
,

0 02

0 0 0 0

0 0 0

0 0 01
,

0 02

0 0 0 0

0 0 0

0 0 0 I 0
,  1(1 1) .

0 0 0 0 0 0

0 0 0 0

iC

C
s

iC C

C

iC
s

C iC

i

i
s s

−
=

−

−
=

−

−

= = − +

ɶ

ɶ

�

ɶ ɶ

(13) 

 

The spin operators lns
ɶ

 (13) of SU(2) 

algebra commute with the operator 0
0 iγ ω∂ +  

of the FW equation (7). It is important to note 
that transformation (12) does not change the 
operator 0

0 iγ ω∂ + . 

On the basis of the spin operators (13) the 
bosonic spin (1,0) representation of the 
Poincare group P  is constructed. It is easy to 
show (after our consideration in [5] and 
above) that B( , )p jµ µν  generators 
 

B
0 0

B
0 0 0

,  ,  ,

( )
,

2

n n ln l n n l ln

k k
k k k

p i p j x x s

s
j x i x

m

γ ω

γ ω
ω ω

= − = ∂ = ∂ − ∂ +

 ∂ × ∂= ∂ + + + + 

ɶ��

ɶ

(14) 

 

of the group P  commute with the operator of 
the FW equation (7) and satisfy the 
commutation relations of the Lie algebra of 
the group P  in manifestly covariant form. 
The operators (14) generate in the space 3,4

H  
another than the fermionic FP -generators D-
64 – D-67 of [1] unitary P  representation, i. 
e. the bosonic BP  representation of the group 
P , with respect to which the FW equation 
(7) is invariant. For the generators (14) the 
Casimir operators have the form: 
 

     ( )

2 B 2 2

32

,  

I 0
1 1 1 .

0 0

p p m W w w m s

m

µ µ
µ µ= = =

= − +

�

ɶ
       (15) 

 

Hence, according to the Bargman – Wigner 



Науковий вісник Ужгородського університету. Серія Фізика. Випуск 32. – 2012 

  
106 

classification, we consider here the spin 
s=(1,0) representation of the group P . 
 The corresponding bosonic spin 
s=(1,0) symmetries of the Dirac equation (8) 
can be found from the generators (14) with 
the help of FW operator ±V  (6) in the form 

−+ VjpV ),( B
µνµ . 

 
4. Bosonic spin s=(1,0) multiplet solution of 

the Foldy – Wouthuysen and Dirac 
equations 

 

Here as the next step in FB duality 
investigation we consider the bosonic solution 
of the Dirac (FW) equation. A bosonic 
solution of the FW equation (7) is found 
completely similarly to the procedure of 
construction of standard fermionic solution. 
Thus, the bosonic solution is determined by 
some stationary diagonal complete set of 
operators of bosonic physical quantities for 
the spin s=(1,0)-multiplet in the FW 
representation, e. g., by the set "momentum-
spin projection 3s

ɶ
: 

 

                      
3( ,  )p s= −∇�

ɶ
                  (16) 

 
where the spin operators s

�

ɶ
 and 3s

ɶ
 for the 

spin s=(1,0)-multiplet are given in (13). The 
fundamental solutions of equation (7), which 
are the common eigen solutions of the 
bosonic complete set (16), have the form 
 

        

r3/ 2r

r3/ 2r

1
( , ) d ,

(2 )

1
( , ) d ,

(2 )

,

ikx

k

ikx

k

t x e

t x e

kx t kx

ϕ
π

ϕ
π

ω

− −

+

=

=

= −

�

�
ɶɶ

�

�

��

        (17) 

 

where ( )d β
α αδ=  are the Cartesian orts in the 

space 4 3,4⊗ ⊂C H , numbers 
r (1,2),  r (3,4)= =ɶ  mark the eigen values 

( 1, 1,0, 0)+ −  of the operator 3s
ɶ

 from (13). 
The bosonic solutions of equation (7) 

are the generalized states, belonging to the 
space 3,4×

S ; they form the complete 
orthonormalized system of bosonic states. 
Therefore, any bosonic physical state of the 

FW field φ  from the dense in 3,4
H  manifold 

3,4
S  (the general bosonic solution of the 
equation (7)) is uniquely presented in the 
form 
 

  

3 r
(1,0) r3/ 2

*r
r

1
( ) [ ( )d

(2 )

( )d ],

ikx

ikx

x d k k e

k e

φ ξ
π

ξ

−=

+

∫
ɶ

ɶ

�

�
   (18) 

 

where r r( ),  ( )k kξ ξ ɶ
� �

 are the coefficients of the 
expansion of bosonic solution of the FW 
equation (7) with respect to the Cartesian 

basis ( )d β
α αδ= . The relationships of 

amplitudes r r( ),  ( )k kξ ξ ɶ
� �

 with quantum 

mechanical bosonic amplitudes r r( ),  ( )b k b kɶ
� �

 
of probability distribution according to the 
eigen values of the stationary diagonal 
complete set of operators of quantum 
mechanical bosonic s=(1,0)-multiplet are 
given by 
 

       

1 1 2 3 4

3 2 4 3 4

1
,  ( ),

2
1

,  ( ),
2

b b b

ib b b

ξ ξ

ξ ξ

= = − +

= − = −
        (19) 

 

where the 4 amplitudes 1,2,3,4( )b k
�

 are the 
quantum mechanical momentum-spin 
amplitudes with the eigen values ( 1, 1,0, 0)+ −  

of the quantum mechanical (1,0) multiplet 3s
ɶ

 
operator projections, respectively (last eigen 
value 0 is related to the proper zero spin). 
And if 3,4

(1,0)( )xφ ∈S , then the bosonic 

amplitudes r r( ),  ( )k kξ ξ ɶ
� �

 belong to the 
Schwartz complexvalued test function space 
too. 

Moreover, the set B
(1,0){ ( )}xφΦ ≡  of 

solutions (18) is invariant namely with respect 
to the unitary bosonic representation of the 
group P , which is determined by the 
generators (14) and Casimir operators (15). 
Therefore, the Bargman - Wigner analysis of 
the Poincare symmetry of the set 

B
(1,0){ ( )}xφΦ ≡  of solutions (18) completes 

the demonstration that it is the set of Bose-
states (1,0)φ  of the field φ , i. e. the s=(1,0)-
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multiplet states. Hence, the existence of 
bosonic solutions of the FW equation is 
proved. 

In the terms of quantum mechanical 

momentum-spin amplitudes r r( ),  ( )b k b kɶ
� �

 
from (19), the bosonic spin (1,0)-multiplet 
solution φψ += V  of the Dirac equation (8) is 
given by 
 

   ( )

( )

3 1
13/ 2

3 4
2

*2 *3 *4
1 2

1
( ) { [

(2 )

1
]

2
1

[ ]},
2

ikx

ikx

x d k e b v

b b v

e ib v b b v

ψ
π

− −

−

+ +

=

− +

+ + −

∫

    (20) 

 
where the 4-component spinors are the same 
as in the Dirac theory of fermionic doublet 
 

r r
r r

r r

1 2

( )d d
( ) ,  ( ) ,

d ( )d

1 01
,  d ,  d .

0 12 ( )

m k
v k N v k N

k m

N
m

ω σ
σ ω

ω ω

− +
+ ⋅= =
⋅ +

≡ = =
+

�⌢ �
� �

�� ⌢

⌢ ⌢

(21) 

 
The well known (standard) Fermi 

solution of the Dirac equation for the spin 
s=1/2 doublet has the form  
 

( )
( )

3
1 23/ 2

* *
1 2

1
( ) [

(2 )

],

ikx

ikx

x d k e a v a v

e a v a v

ψ
π

− − − − −
+ −

+ + + +
+ −

= +

+ +

∫
(22) 

 

where ( ),  ( )a k a k− −
+ −

� �
 are the quantum 

mechanical momentum-spin amplitudes of the 
particle with charge –e and eigen values of 

spin projection +1/2 and -1/2; ( ),  ( )a k a k+ +
− +

� �
 

are the quantum mechanical momentum-spin 
amplitudes of the antiparticle with charge +e 
and eigen values of spin projection -1/2 and 
+1/2, respectively.  

All the above given assertions about the 
Fermi – Bose duality of the spinor field are 
valid both in FW and PD representation, i. e. 
for both equations FW (7) and Dirac (8). It is 
easily shown with the help of the FW 
transformation V ±  (6), which transform the 

FW solutions and operators into the Dirac 
solutions and operators. 
 
5. The Fermi – Bose conservation laws for 

the spinor field 
 

At first we must consider the Lagrange 
approach (L-approach) for the spinor field 

( )xφ  in the FW representation. Only after that 
the Noether theorem and the corresponding 
analysis of CL are determined. 

The L-approach for the spinor field 
has been formulated at first in [8, 9]. The 

representation of operator 2mω ≡ −∆ +⌢
 in 

the form of the series over the Laplace 
operator ∆  powers has been used. 
Mathematical correctness was not considered. 

In publication [10] the construction of 
the L approach under consideration in the 
quantummechanical rigged Hilbert space 
(both in the coordinate and momentum 
realizations of this space) has been verified. 
In momentum realization this space has the 
form 
 

                      3,4 3,4 3,4;×⊂ ⊂ɶ ɶɶS H S                   

        

3,4 4 3 4
=1

23

{ ( ) :  R ;

( ) }.

k

d k k

α
αφ φ

φ

⊗= ≡ →

< ∞∫

�
ɶ

ɶ

H C

      (23) 

 

Here 
3R
k
�  is the momentum operator p

�
 

spectrum, which is canonically conjugated to 

the coordinate x
�

 ([ , ]j jx p iδ=ℓ ℓ
). The 

corresponding x
�

-realization is connected to 
(1) by 3-dimensional Fourier transformation. 
The alternative using of both realizations is 
based on the principle of heredity with 
classical and non-relativistic quantum 
mechanics of single mass point and with the 
mechanics of continuous media. The 
Lagrange function and the action (in 

alternative x
�

 or k
�

-realizations) are 
constructed in complete analogy with their 
consideration in the classical mechanics of a 
system with finite number of freedom degrees 

1 2( , ,...)q q q≡ . The difference is only in the 
fact that here the continuous variable 

3R
k

k ∈ �

�

 is the carrier of freedom degrees. In 

the k
�

-realization, where this analogy is 



Науковий вісник Ужгородського університету. Серія Фізика. Випуск 32. – 2012 

  
108 

maximally clear, the Lagrange function has 
the form 
 

( )

† †
0 0

† 0 † † 0
0 0

2 2

( , , , , , )

( , ) ( , ) ,
2

,                                  (24)

L L

i
i i

k m

φ φ φ φ

φ φ γ ωφ φ ωφ γ φ

ω

=

= + − −

≡ +

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ

�
ɶ

 

 

and in the x
�

-realization this function can be 
found from (24) by the Fourier 
transformation. The Euler – Lagrange 
equations coincide with the FW equation in 
both realizations. 

The well defined L-approach for the 
FW field becomes essentially actual problem 
after the construction in [18] of the quantum 
electrodynamics in the FW representation. 

The L-approach under consideration 
and the Noether theorem lead to the following 
general formula for the calculation of the CL 
 

               
3 †( ) ( )Q d x x iq xφ φ= ∫              (25) 

 

where q  is the arbitrary symmetry generator. 
Note briefly about the FB conservation 

laws (CL) for the spinor field. It is preferable 
to calculate them in the FW (not local PD) 
representation too. In FW representation the 
Fermi spin 23 31 12( ) ( , , )ns s s s s= =ℓ�

 from (11) 
(together with the boost spin) is the 
independent symmetry operator for the FW 
equation. The orbital angular momentum and 
pure Lorentz angular momentum (the carriers 
of the external statistical degrees of freedom) 
are in this representations the independent 
symmetry operators too (one can find the 
corresponding independent spin and angular 
momentum symmetries in the PD 
representation for the Dirac equation too, but 
the corresponding operators are essentially 
nonlocal). Hence, one obtains 10 Poincare 
and 12 additional (3 spin, 3 pure Lorentz spin, 
3 angular momentum, 3 pure angular 
momentum) CL. 

Therefore, in the FW representation one 
can find very easy the 22 fermionic and 22 
bosonic CL. The separation into bosonic and 
fermionic set is caused by the existence of FB 
symmetries and solutions (see the Sec. 3, 4 
above). Indeed, if substitution of bosonic P  

generators 
Bq  (14) and bosonic solutions 

(1,0)φ  (18) into the Noether formula (25) is 

made, then automatically the bosonic CL for 
s=(1,0)-multiplet are obtained. The standard 
substitution of corresponding well known 
fermionic generators and solutions (22) gives 
fermionic CL. 
 We illustrate briefly the difference in 
fermionic and bosonic CL on the example of 
corresponding spin conservation. For the 
fermionic spin 
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      (26) 

 

and bosonic spin (13) the corresponding CL 
are given by 
 

            

F 3 †

3 †

( ) ( )

( ) ( ),

mn mn

mn

S d x x is x

d kA k is A k

φ φ=

=

∫

∫
� �             (27) 
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=

∫
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        (29) 

 

and the difference between Fermi spin 
23 31 12( ) ( , , )ns s s s s= =ℓ�

 (26) and Bose spin 
23 31 12( ) ( , , )ns s s s s= =ℓ�

ɶ ɶ ɶ ɶ ɶ
 (13) is evident. 

 We present these CL in terms of 
quantum mechanical Fermi and Bose 
amplitudes. Such explicit quantum statistical 
form has all integral conserved quantities. 
 

6. Conclusions 
 

The property of the Fermi – Bose duality 
of the Dirac equation (both in the Foldy – 
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Wouthuysen and the Pauli – Dirac 
representations), which proof was started in 
[5], where the bosonic symmetries of this 
equation were found, is demonstrated here on 
the next level – on the level of existence of 
the spin (1,0) bosonic solutions of the 
equation under consideration and 
corresponding bosonic conservation laws. 

The investigation of the spinor field in the 
Foldy – Wouthuysen (not in standard Dirac) 
representation has the independent meaning 
and purpose. This representation is interest 
itself in connection with the recent result [18] 
of V. Neznamov, who developed the 
formalism of quantum electrodynamics in the 
Foldy – Wouthuysen representation, see also 
the results in [19]. 

The 64 dimensional ERCD and 29 
dimensional proper ERCD algebras, which 
have been put into consideration in [5], are 
the useful generalizations of standard 16 
dimensional CD algebra. Their application 
enabled us to prove the existence of additional 
bosonic symmetries, solutions and 
conservation laws for the spinor field, for the 
Foldy – Wouthuysen and the Dirac equations. 

These algebras are our main mathematical 
tool for the demonstration of Fermi – Bose 
duality of the spinor field and Dirac equation. 

Similarly, the fermionic spin s=1/2 
properties for the Maxwell equations both 
with nonzero and zero mass can be proved 
(see e. g. the procedure given in [3]). Hence, 
such consideration is directly related to the 
electromagnetic theory too. 

The property of the Fermi – Bose duality of 
the Dirac equation, which was proved in our 
publications and here, does not have the direct 
influence on the existence of the Fermi – 
Bose statistics. Our results do not break the 
Fermi statistics for the fermions (with the 
Pauli principle) and Bose statistics for bosons 
(with Bose condensation). We also never 
mixed this statistics between each other. Our 
assertion is following. One can apply with 
equal success both Fermi and Bose statistics 
for one and the same Dirac equation and one 
and the same spinor field, i. e. the Dirac 
equation can describe both the fermionic 
and bosonic states. It is the main conclusion 
from the results, which are presented here. 
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ПРО ТЕОРЕТИКО-ГРУПОВІ ОСНОВИ ФЕРМІ – БОЗЕ 
ДУАЛІЗМУ СПІНОРНОГО ПОЛЯ. РОЗВ’ЯЗКИ ТА 

ЗАКОНИ ЗБЕРЕЖЕННЯ 
 

Властивість Фермі – Бозе дуалізму рівняння Дірака з ненульовою масою доведена на основі 
узагальненої алгебри Кліффорда – Дірака та теоретико-групового аналізу спінорного поля. В 
якості стартової позиції для розгляду використано представлення Фолді – Вотхойзена. 
Доведено, що результати у стандартному формалізмі Дірака є простими наслідками наведеного 
розгляду. Показано, що рівняння Дірака може описувати не лише ферміонні, але й бозонні 
стани. Доведення нашого твердження дано на прикладах наявності бозонних симетрій та 
розв’язків рівняння Дірака. Крім того доведено, що наслідками рівняння Дірака є також бозонні 
закони збереження. 
Ключові слова: спінорне поле, рівняння Дірака, представлення Фолді – Вотхойзена, 

ферміони, бозони. 
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О ТЕОРЕТИКО-ГРУППОВЫХ ОСНОВАХ ФЕРМИ – 

БОЗЕ ДУАЛИЗМА СПИНОРНОГО ПОЛЯ. РЕШЕНИЯ И 
ЗАКОНЫ СОХРАНЕНИЯ 

 
Свойство Ферми – Бозе дуализма уравнения Дирака с ненулевой массой доказано на основе 

обобщенной алгебры Клиффорда – Дирака и теоретико-группового анализа спинорного поля. В 
качестве старта рассмотрения использовано представление Фолди – Вотхойзена. Доказано, что 
результаты в стандартном формализме Дирака являются простыми следствиями приведенного 
рассмотрения. Показано, что уравнение Дирака может описывать не только фермионные, но и 
бозонные состояния. Доказательство нашего утверждения дано на примерах наличия бозонных 
симметрий и решений уравнения Дирака. Кроме того доказано, что следствиями уравнения 
Дирака являются также и бозонные законы сохранения. 
Ключевые слова: спинорное поле, уравнение Дирака, представление Фолди – Вотхойзена, 

фермионы, бозоны. 


