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ON THE GROUP-THEORETICAL FOUNDATIONS FOR
FERMI — BOSE DUALITY OF THE SPINOR FIELD.
SOLUTIONS AND CONSERVATION LAWS

The property of Fermi — Bose duality of the Diraguation with nonzero mass is
proved on the basis of generalized Clifford — Diaégebra and group-theoretical analysis
of the spinor field. The Foldy — Wouthuysen reprgéggon is used as a starting ground
for consideration and the results for standard ®foamalism are proved to be the simple
consequences of such consideration. It is shownthieaDirac equation can describe not
only fermionic but also the bosonic states. Theopmf our assertion is given on the
example of the existence of bosonic symmetries soidtions of the Dirac equation.
Furthermore, the bosonic conservation laws are qutde be the consequences of the

Dirac equation.
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1. Introduction

The Fermi — Bose (FB) duality of the
spinor field has been mentioned at first by L.
Foldy [1] The extended consideration has
been given in [2]. P. Garbaczewski proved [2]

that the Fock spaceﬂ[F(H3'M) over the

quantum mechanical spade,(R®*) 0 C" of
the particle, which is described by the field
@ M(@,N) - C°N, allows to fulfill the dual,
Fermi — Bose (FB), quantization of the field
@ in 4. And both the canonical
commutation relations (CCR) and
anticommutation relations (CAR) were used
for the realization of the above mentioned
guantization. Moreover, for the both types of
guantization the uniqueness of the vacuum in
9(F was proved. The dual FB quantization
was illustrated for different examples and in
the spacesM (1, N) of arbitrary dimensions.
The massless spinor field was considered in
details [2].

In our publications the consideration
of the FB duality conception of the field was
extended by application of the group-
theoretical approach for the problem (FB
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duality was often called by us as the
relationship between the fields of integer and
half-integer spins, see e. g. [3, 4] and
references therein). As a first step we have
considered in details the case of massless
Dirac equation. Both Fermi and Bose local
representations of the universal covering
& 0L=SL(2,C) of proper ortochronous
Poincare group P/ O L, =SO(,3, with
respect to which the Dirac equation is
invariant, were found. The same was realized
[3] for the slightly generalized original
Maxwell equations, in which the complex
valued 4-object¢(x) = E(x)—iH(x) of field
strengths is the tensor-scalas=1,0) < -
covariant. Recently [5] we were able to
extend our consideration for the Dirac
equation with nonzero mass.

Here we consider the dual (fermionic
and bosonic) symmetries [5] and solutions [6]
of the Dirac (Foldy — Wouthuysen (FW) [7])
equation with nonzero mass and FB
conservation laws for the spinor field. We
presented in details the corresponding
guantum mechanical stationary complete sets
of operators of FB physical quantities. It
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allows us to demonstrate the statistical aspect
of the spinor field FB duality.

The FW representation [7] is used as a
starting ground for consideration and the
results for standard Dirac formalism are
proved to be the simple consequences of such
consideration. In the FW representation the
additional symmetries have the evident simple
form in comparison with the symmetries in
the standard Pauli — Dirac (PD) representation
(fermionic spin as a symmetry operator is a
good example). Therefore, start from the FW
representation enabled us to find the new
additional conservation laws (CL) even for
the standard spinor solutions of the Dirac
equation. On the basis of the bosonic
solutions [6] of the FW equation not only new
but an unexpected bosonic CL for the Dirac
field are found. All the results, which are
proved in FW representation, are translated
very easy in the PD representation by the help
of FW transformation [7].

In order to derive the CL on the basis
of the Noether theorem one needs to explore
the Lagrange approach and the Lagrange
function. The Lagrange approach for the
spinor field in FW representation has been
suggested in [8, 9] in the terms of infinite
order derivatives. Our desire to have ordinary
type Lagrange approach gives the
consideration in [10] and here of the new
Lagrange function for the spinor field in FW
representation.

For our purposes we use the
mathematical formalism of the extended real
Clifford — Dirac (ERCD) algebra and proper
ERCD algebra [5]. Such generalization of the
standard Clifford — Dirac (CD) algebra
enabled us [5] to prove the bosonic
symmetries of the FW and Dirac equation
with nonzero mass.

The property of FB duality of the
spinor field was the subject of our 5 reports
on the conference, where step by step this
duality was demonstrated on the examples of
symmetry, solutions and CL. Therefore, this
paper covers the material not only from our
abstract [11] but also from the abstracts [12—
15]. Thus, we present belote brief review
of our results, which were reported on the
conference

In Sec. 3 bosonic spin s=(1,0)
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Poincare symmetry of the Foldy -
Wouthuysen and Dirac equations is presented
briefly.

Sec. 4 gives the possibility to compare
the fermionic and bosonic solutions of the
FW (Dirac) equation.

In Sec. 5 the brief consideration of the
Lagrange approach for the spinor field in FW
representation is presented. On this basis the
examples of both fermionic and bosonic
conservation laws for the Dirac theory are
given.

In Sec. 6 the main conclusions are
discussed.

2. Notations and definitions

The system of unitg =c =1 and metric
g=(9")=(+--), a*=g"a,, are taken.
Here the Greek indices are changed in the
regiono,1,2,3= 0,; Latin —1,3, the summation
over the twice repeated index is implied.

Our consideration is fulfilled in the
rigged Hilbert spac&®* O H**0 *S** where
[1** is given by

114 = L(R) D C**={p=(¢):

2 1)
R® - C™; jd3x|¢(t,x)| <w}, #=0,1,2,3

and symbol x» in *s** means, that the space
of the Schwartz generalized functiorng* is
conjugated to the Schwartz test function space
S** by the corresponding topology. The
application of the rigged Hilbert space allows
one to reproduce a detailed consideration of a
field theory in mathematically correct form.

For the purposes connected with
physics it is wuseful to consider the
corresponding groups and algebras with real
parameters (e. . the parameters

a=(a"), w=(w") of the translations and

rotations for the groug®! 0 L, =SO(1,3 are

real). Therefore, corresponding generators are
anti-Hermitian. The mathematical correctness
of such choice of generators is verified in [16,
17].

The ordinary CD algebra is considered
here as the algebra dfx4 Dirac matrices in
the standard PD representation with the
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standard2x2 Pauli matrices in their most
extended explicit forms.

We consider the standard 16-dimensional
CD algebra of they” matrices as a real one

and add the imaginary unit=y/-1 together
with the operatorC of complex conjugation
(the involution operator in the spac&*) into

the set of the CD algebra possible generators.

It enabled us to extend the standard CD
algebra up to the 64-dimensional extended
real CD algebra (ERCD algebra of [5]). Here
the subalgebras of the ERCD algebra are
considered briefly. The most important are the
representations ifi’™* of the 29-dimensional
proper ERCD algebra SO(8) spanned on orts

VoY yiEyYyys,
Y =yy, yo=iyyt, yr=iy’ @

The generators (2) satisfy the
anticommutation relations [1]
VY Py =28
3)

AB=12..7= 17,

and the generators of proper ERCD algebra
(together with unit ort we have 29

independent orter™® = (I,Zsz‘é))

S8 =(g" =3 YL 0 =-Et =2y

AB=1,8, (4

satisfy the commutation relations of SO(8)
algebra

[SAB S~D] :5AéSBD +5(:BSDA
+5I§DSA(: +5DASCI§

Namely the proper ERCD algebra SO(8),
given by the 29 orts (4), is our [5] direct
generalization of a standard 16-dimensional
CD algebra. It is also the basis for our dual
FB consideration of a spinor field, which
enabled us to prove the additional bosonic
properties of this field. For the physical

(5)
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applications we consider the realizations of
the proper ERCD algebra in the field space
“SM@,3)OC™=*5**  of the Schwartz
generalized functions and in the quantum
mechanical Hilbert spaceLHls"1 (). These
realizations are found with the help of
transformationsvV*SO(8V ™~ ,vSO(8) where
the operators of transformation have the form

Vi:ii;/aﬁcmm V=I2 0.
J2o@+m) "~ |0 Cl)

1)
]
|
>
+
;‘
NIII

‘1 j (6)
,01=12,3
0

We put into consideration ERCD algebra
(64 orts) and proper ERCD algebra (29 orts)
into the FW representation of the spinor field
[7] (advantages in comparison with the
standard Dirac equation in definitions of
coordinate, velocity and spin operators are
well known from [7]). In this representation
the equation for the spinor field (the FW
eqguation) has the form

(0, +1Y’wW)AX) =0; w=~-A+n7,

(7)
xOM(,3), pOH**;

and is linked with the Dirac equation
(0o +iH )Y (X) =0, Hy =a[p+/m, (8)

by the FW transformatiok’*:

AX) =V Y (x), ¢x)=V@(x), ©)
VYN~ =ap+pm
Below the ERCD algebra and proper
ERCD algebra (4) are essentially used in our
proofs of bosonic properties of the Dirac and
FW equations.

3. Bosonic spin s=(1,0) symmetry of the
Foldy — Wouthuysen and Dirac equations

We have found in [5] different bosonic
symmetries of the FW equation: (i)
irreducible vector (1/2,1/2) and reducible
tensor-scalar(1,0)] (0,0) representations of
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the SO(1,3)= L, algebra of the Lorenz group,

(i) the representation of the universal
covering & 0.L=SL(2,C) of proper
ortochronous Poincare group

P O L, =S0(1,3, with respect to which the
Dirac (FW) equation is invariant.

Below we demonstrate briefly the example
of the construction of the Lie algebra of the
bosonic spin (1,0) representation of the
Poincare group < 0O .£=SL(2,C), with
respect to which the FW (Dirac) equation is
invariant. Namely the representations of this
group are important to theoretical physics.

The fundamental assertion is that
subalgebra SO(6) of proper ERCD algebra
(4), which is determined by the operators

{I, a*®=2¢"}, AB =16, (10)

(4= A w

is the algebra of invariance of the Dirac
equation in the FW representation (7) (in (11)
the Six matrices

WEnryvvivys are

known from (2)). Algebra SO(6) contains two
different realizations of SU(2) algebra for the
spin s=1/2 doublet. By taking the sum of the
two independent sets of SU(2) generators
from (11) one can obtain the SU(2) generators
of spin s=(1,0) multiplet, which generate the
transformation of invariance of the FW
equation (7). Transformation

V2 0 0 o0
w=1lo o iWx o
V2lo0 ¢ o 1
0 -C 0 -1
J2 0 0 o0
. 1/0 0o -Cc -C
wWil=— (12)
V2|0 i o0 o
o 0 1 -1

WW™ =W W =1,

translates these generators of spin s=(1,0)

105

multiplet into the bosonic representation

0 0 iC
s=ij0 0C 9
~ J2lHic € 0O
0 0 O
0 0 C
Szzio 0 -iC (13)
~ J2]-C ic o0 ’
0 0 O
- 00
o010 ,§2:—1(1+1*3 1
~ |10 00Q° 0
0 0O

The spin operatorss, (13) of SU(2)

algebra commute with the operatdy +iy w

of the FW equation (7). It is important to note
that transformation (12) does not change the
operatord, +iy°’w.

On the basis of the spin operators (13) the
bosonic spin (1,0) representation of the
Poincare group” is constructed. It is easy to
show (after our consideration in [5] and

above) that(p,,, jfjv) generators

p0=—iyoa), pn =an'jli :XIan_Xnal +§n’

' i 9, , (%0 (14)
v e

of the group<” commute with the operator of
the FW equation (7) and satisfy the
commutation relations of the Lie algebra of
the group & in manifestly covariant form.
The operators (14) generate in the spHéé
another than the fermioni¢”™ -generators D-
64 — D-67 of [1] unitary<? representation, i.
e. the bosonic?® representation of the group
&, with respect to which the FW equation
(7) is invariant. For the generators (14) the
Casimir operators have the form:

p“p, =m’, W =w'w, =m’s?

I, 0
o d

Hence, according to the Bargman — Wigner

=-1(1+ )7 (15)
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classification, we consider here the spin
s=(1,0) representation of the group.

The corresponding bosonic spin
s=(1,0) symmetries of the Dirac equation (8)
can be found from the generators (14) with
the help of FW operatov* (6) in the form

V(P Jm V7

4. Bosonic spin s=(1,0) multiplet solution of
the Foldy — Wouthuysen and Dirac
equations

Here as the next step in FB duality
investigation we consider the bosonic solution
of the Dirac (FW) equation. A bosonic
solution of the FW equation (7) is found
completely similarly to the procedure of
construction of standard fermionic solution.
Thus, the bosonic solution is determined by
some stationary diagonal complete set of
operators of bosonic physical quantities for
the spin  s=(1,0)-multiplet in the FW
representation, e. g., by the set "momentum-
spin projections’:

(p=-0, %) (16)

where the spin operators and s° for the
spin s=(1,0)-multiplet are given in (13). The
fundamental solutions of equation (7), which

are the common eigen solutions of the
bosonic complete set (16), have the form

¢ (t,X) = We_ikxdr :

+ t %)= 1 ikxd
P ’X)-We AT
kx = at — KX,

whered, = (Jf) are the Cartesian orts in the

space C™ ogHe, numbers
r=(,2), 7= (3,4) mark the eigen values
(+1,-1,0,0) of the operatoss® from (13).

The bosonic solutions of equation (7)
are the generalized states, belonging to the
space -s$*4; they form the complete

orthonormalized system of bosonic states.
Therefore, any bosonic physical state of the
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FW field ¢ from the dense ifdl** manifold

s*¢ (the general bosonic solution of the
equation (7)) is uniquely presented in the
form

Guo () ==y [ AHE (KY€

(277.)3/2
+&7 (k)d €],

(18)

where &' (k), & (k) are the coefficients of the

expansion of bosonic solution of the FW
equation (7) with respect to the Cartesian

basis da=(5f). The relationships of
amplitudes & (k), & (k)

mechanical bosonic amplitudds(k), b" (k)

of probability distribution according to the
eigen values of the stationary diagonal
complete set of operators of quantum

with quantum

mechanical bosonic s=(1,0)-multiplet are
given by
<tl :bl, <(2 - _i(b3+b4)’
V2
) (19)
3:_ib2, 4 _ bs_b4,
¢ '3 _ﬁ( )

where the 4 amplitude®">*4k) are the
guantum mechanical momentum-spin
amplitudes with the eigen valu¢sl,-1,0,0)

of the quantum mechanical (1,0) multiplgt
operator projections, respectively (last eigen
value 0 is related to the proper zero spin).
And if ¢ ,(x)08*, then the bosonic

amplitudes &'(k), & (k) belong to the
Schwartz complexvalued test function space
too.

Moreover, the setd® ={g, (X} of

solutions (18) is invariant namely with respect
to the unitary bosonic representation of the
group &, which is determined by the
generators (14) and Casimir operators (15).
Therefore, the Bargman - Wigner analysis of
the Poincare symmetry of the set

®° ={¢. (X} of solutions (18) completes

the demonstration that it is the set of Bose-
states ¢, ,, of the field ¢, i. e. the s=(1,0)-
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multiplet states. Hence, the existence of
bosonic solutions of the FW equation is
proved.

In the terms of quantum mechanical
momentum-spin  amplitudes b (k), b° (k)
from (19), the bosonic spin (1,0)-multiplet
solution ¢ =V~ @ of the Dirac equation (8) is
given by

w( )— < j d*k{e™] b'yv;
1 (s ia)
_ﬁ(b +b )vz] (20)

ocrs ¥ 1 b
+e*[ib?V; +—( 3 -
J2

where the 4-component spinors are the same
as in the Dirac theory of fermionic doublet

6 )v;1h,

_ w+m)d ~ 7 [k
v © =N e y=n| T
o [kd, (w+m)d, (21)
Net g a-
\J20(w+ m)
The well known (standard) Fermi

solution of the Dirac equation for the spin
s=1/2 doublet has the form

W(x) =

jd3k[e 'kx(av +a v2)

( 3/2 (22)
+é (v +d v )],
where a;(k), a_(k) are the quantum

mechanical momentum-spin amplitudes of the
particle with charge —e and eigen values of
spin projection +1/2 and -1/2a*(k), a} (k)

are the quantum mechanical momentum-spin
amplitudes of the antiparticle with charge +e
and eigen values of spin projection -1/2 and
+1/2, respectively.

All the above giverassertions about the
Fermi — Bose duality of the spinor field are
valid both in FW and PD representatign. e.
for both equations FW (7) and Dirac (8). It is
easily shown with the help of the FW
transformationV* (6), which transform the
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FW solutions and operators into the Dirac
solutions and operators.

5. The Fermi — Bose conservation laws for
the spinor field

At first we must consider the Lagrange
approach (L-approach) for the spinor field
@(X) in the FW representation. Only after that

the Noether theorem and the corresponding
analysis of CL are determined.

The L-approach for the spinor field
has been formulated at first in [8, 9]. The

representation of operataw=+-A+n’ in
the form of the series over the Laplace
operator A powers has been used.
Mathematical correctness was not considered.
In publication [10] the construction of

the L approach under consideration in the
guantummechanical rigged Hilbert space
(both in the coordinate and momentum
realizations of this space) has been verified.
In momentum realization this space has the
form

g3,4 0 H3,4 0 xg3,4

0¥ ={p=(¢) 2y: RE - (7%
o2 (23)
[d k\go(k)\ < o0}
Here RE is the momentum operatop

spectrum, which is canonically conjugated to
the coordinate X ([X', p'1=id"). The
correspondingX -realization is connected to
(1) by 3-dimensional Fourier transformation.
The alternative using of both realizations is
based on the principle of heredity with
classical and non-relativistic quantum
mechanics of single mass point and with the

mechanics of continuous media. The
Lagrange function and the action (in
alternative X or k-realizations) are

constructed in complete analogy with their
consideration in the classical mechanics of a
system with finite number of freedom degrees
9=(9.9,,...). The difference is only in the

fact that here the continuous variable
kOR?

the Kk -realization, where this analogy is

is the carrier of freedom degrees. In
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maximally clear, the Lagrange function has
the form

L:L(CZ,CZT,CZ,O,(F,O)
=S (I @otiVap)- (@' o-iawy)9),
@=k? +nt,

and in theX-realization this function can be
found from (24) by the Fourier
transformation. The Euler - Lagrange
equations coincide with the FW equation in
both realizations.

The well defined L-approach for the
FW field becomes essentially actual problem
after the construction in [18] of the quantum
electrodynamics in the FW representation.

The L-approach under consideration
and the Noether theorem lead to the following
general formula for the calculation of the CL

Q= [d°x¢' (Yiag%)

whereq is the arbitrary symmetry generator.

Note briefly about theFB conservation
laws (CL)for the spinor field. It is preferable
to calculate them in the FW (not local PD)
representation too. In FW representation the
Fermi spins =(s™) =(s*,s*,s") from (11)
(together with the boost spin) is the
independent symmetry operator for the FW
equation. The orbital angular momentum and
pure Lorentz angular momentum (the carriers
of the external statistical degrees of freedom)
are in this representations the independent
symmetry operators too (one can find the
corresponding independent spin and angular
momentum  symmetries in the PD
representation for the Dirac equation too, but
the corresponding operators are essentially
nonlocal). Hence, one obtains 10 Poincare
and 12 additional (3 spin, 3 pure Lorentz spin,
3 angular momentum, 3 pure angular
momentum) CL.

Therefore, in the FW representation one
can find very easy the 22 fermionic and 22
bosonic CL. The separation into bosonic and
fermionic set is caused by the existence of FB
symmetries and solutions (see the Sec. 3, 4
above). Indeed, if substitution of bosoni¢

(2

(25)
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generators qB (14) and bosonic solutions
W0y (18) into the Noether formula (25) is

made, then automatically the bosonic CL for
s=(1,0)-multiplet are obtained. The standard
substitution of corresponding well known
fermionic generators and solutions (22) gives
fermionic CL.

We illustrate briefly the difference in
fermionic and bosonic CL on the example of

corresponding spin conservation. For the
fermionic spin
—-ilgc 0
s = (2, 5% s1) = (g -
( =)=l
1 0 0 O (26)
,_—-il0 -1 0 O
- 20 0o 1 0
O 0 0 -

and bosonic spin (13) the corresponding CL
are given by

Ste = [ d°%g' ()i, )

- _ (27)
= [ d%A"(K)is, ACK),
So = [ 4°Xf, (NS 0¥) N
= [d%B' (K)is,B(K), (29)
where
a; (k) b*(K)
Ak =8| Biy="®| (2
a’* (k) b (k)
a’(K) b* (K)

and the difference between Fermi spin
s=(s") =(s*5s* s (26) and Bose spin
$=(s") =(s* 5% s") (13) is evident.

We present these CL in terms of
guantum mechanical Fermi and Bose

amplitudes. Such explicit quantum statistical
form has all integral conserved quantities.

6. Conclusions

The property othe Fermi — Bose duality
of the Dirac equation(both in the Foldy —
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Wouthuysen and the Pauli - Dirac
representations), which proof was started in
[5], where the bosonic symmetries of this
eqguation were found, is demonstrated here on
the next level — on the level of existence of
the spin (1,0) bosonic solutions of the
equation under consideration and
corresponding bosonic conservation laws.

The investigation of the spinor field in the
Foldy — Wouthuysen (not in standard Dirac)
representation has the independent meaning
and purpose. This representation is interest
itself in connection with the recent result [18]
of V. Neznamov, who developed the
formalism of quantum electrodynamics in the
Foldy — Wouthuysen representation, see also
the results in [19].

The 64 dimensional ERCD and 29
dimensional proper ERCD algebras, which
have been put into consideration in [5], are
the useful generalizations of standard 16
dimensional CD algebra. Their application
enabled us to prove the existence of additional
bosonic symmetries, solutions and
conservation laws for the spinor field, for the
Foldy — Wouthuysen and the Dirac equations.

These algebras are our main mathematical
tool for the demonstration of Fermi — Bose
duality of the spinor field and Dirac equation.

Similarly, the fermionic spin s=1/2
properties for the Maxwell equations both
with nonzeroand zero mass can be proved
(see e. g. the procedure given in [3]). Hence,
such consideration is directly related to the
electromagnetic theory too.

The property of the Fermi — Bose duality of
the Dirac equation, which was proved in our
publications and here, does not have the direct
influence on the existence of the Fermi —
Bose statistics. Our results do not break the
Fermi statistics for the fermions (with the
Pauli principle) and Bose statistics for bosons
(with Bose condensation). We also never
mixed this statistics between each other. Our
assertion is following. One can apply with
equal success both Fermi and Bose statistics
for one and the same Dirac equation and one
and the same spinor field, i. &e Dirac
equation can describe both the fermionic
and bosonic statedt is the main conclusion
from the results, which are presented here.
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PO TEOPETUKO-I'PYIIOBI OCHOBHU ®EPMI —BO3E
AYAJI3MY CIIHTHOPHOI'O IOJIA. PO3B ' A3KHU TA
3AKOHMU 3BEPEXXEHHA

Buiactusicte ®epmi — bosze nyanizmy piBHsSHHS [[ipaka 3 HEHYJIHOBOIO Macoi0 JTOBEACHA Ha OCHOBI
y3aranbHeHoi anreopu Kiiddopna — Jlipaka Ta TEOPETUKO-TPYIOBOTO aHaJi3y CIIHOPHOTO MOjs. B
SKOCTI CTapToBOi MO3MLIT Uil po3MIsALy BHKOpUcCTaHO npencraBieHHs Ponai — BorxoiizeHa.
JloBezieHo, 110 pe3ynbTaTh y cTanaapTHoMy (opmanismi Jlipaka € mpocTUMU HaciiAKaMU HaBEAEHOTO
posrisiny. ITokaszaHo, mo piBHsiHHA [lipaka Moxe omucyBatu He juuie (epMioHHI, ane i 0030HHI
cTanu. JloBeleHHS HAIIOrO TBEP/DKEHHS JaHO Ha IPHKIaJax HasBHOCTI OO30HHMX CHMETpii Ta
po3B’s3kiB piBHsHHSA Jipaka. Kpim Toro noBeneHo, mo HacniakaMmu piBHsSHHS Jlipaka € Takox 0030HHI

3aKOHU 30epeKEeHHs.

KurouoBi caoBa: cminopre moisie, piBHsSHHS [lipaka, mpexncraBmeHHs @Ponmi — Botxoiizena,

¢dbepmionu, 6030HH.
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O TEOPETHUKO-T'PYIIIIOBBIX OCHOBAX ®EPMMU —
BO3E IYAIU3MA CIITMHOPHOI'O IIOJISAA. PELHEHUA U
3AKOHbI COXPAHEHUSA

CroiictBo ®epmu — bo3e nyanusma ypaBHeHus J{upaka ¢ HEHYJIEBOM Maccoil JOKa3aHO Ha OCHOBE
0006mmenHoi anredopsl Kimngpdopna — Jlupaka 1 TeOpeTUKO-TPYIIIOBOTO aHAIM3a CIHHOPHOTO T1oJist. B
Ka4yecTBE CTapTa pacCMOTPEHMs UCIIOJIb30BaHO mpeacTtasieHne @onau — Borxoiizena. [loka3aHo, 4To
pe3ynbTaThl B cTaHaapTHoM (opmanusMe Jupaka sBISIFOTCS IPOCTHIMU CIEACTBUSIMU IPUBEJCHHOTO
paccmotpenns. [loka3zaHo, uTo ypaBHeHHE J[Mpaka MOXET ONHCHIBATh HE TONBKO (PepMHUOHHBIC, HO H
0030HHBIE COCTOSHU. JJ0Ka3aTeIHCTBO HAILIETO YTBEP)KACHHS JAaHO HA MPUMEpax HAJIHIHS OO30HHBIX
cuMMeTpuid U perieHuid ypaBHenusi [upaka. Kpome Toro nokasaHo, 4TO CJIEICTBHSIMU YpPaBHEHHS
Jupaka SBIAI0TCS Takoke M 0030HHBIC 3aKOHBI COXPAaHEHHS.

KnarwueBble ciioBa: crimHOpHOE T0Jie, ypaBHeHue Jupaka, npencrasienue onau — BoTrxoiizeHa,
(epMHOHBI, O030HBI.
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