Introduction

At the world biggest accelerator, the Large Hadron Collider (LHC), now operating at CERN (Geneva), protons are boosted to a velocity close to that of light, which means that processes there are absolutely relativistic, and thus all the relevant formalism should be based on non-Euclidean geometry, developed almost two centuries ago by Bolyai, Gauss and Lobachevsky. The present contribution is an update of recent papers [1], in which elastic proton scattering was studied. In those papers a simple dipole Pomeron (DP) model reproducing the structure of the first and second diffraction cones in pp- and p\bar{p} scattering was developed. The simplicity and transparency of the model enables one to control various contributions to the scattering amplitude, in particular the interplay between the C-even and C-odd components of the amplitude, as well as their relative contribution, changing with s and t.

The possible extensions of DP model include:

- The dip-bump structure typical to high-energy diffractive processes;
- Non-linear Regge trajectories;
- Possible Odderon (C-odd asymptotic Regge exchange);
- Compatible with s- and t-channel unitarity.

Here we consider the spin less case of the invariant high-energy scattering amplitude, \(A(s,t) \), where \(s \) and \(t \) are the usual Mandelstam variables. The basic assumptions of the model are: 1. The scattering amplitude is a sum of four terms, two asymptotic (Pomeron (P) and Odderon (O)) and two non-asymptotic ones or secondary Regge pole contributions, where \(P \) and \(f \) have positive C-parity, thus entering in the scattering amplitude with the same sign in pp- and p\bar{p} -scattering, while the Odderon and \(\omega \) have negative C-parity, thus entering pp- and p\bar{p} -scattering with opposite signs, as shown below:

\[
A(s,t)_{pp} = A_P(s,t) + A_f(s,t) + \pm A_\omega(s,t) + A_O(s,t)
\]

(1)

where the symbols \(P, f, O, \omega \) stand for the relevant Regge-pole amplitudes and the super(sub)script, evidently, indicate pp(pp) scattering with the relevant choice of the signs in the sum (1).

2. We treat the Odderon, the C-odd counterpart of the Pomeron on equal footing, differing by its C-parity and the values of its parameters (to be fitted to the
data). We examined also a fit to \(pp \) scattering alone, without any Odderon contribution. The (negative) result is presented in Sec. 3. The main subject of our study is the Pomeron and the Odderon, as a double poles, or DP, see [1], lying on a nonlinear trajectory, whose intercept is not equal to one. This choice is motivated by the unique properties of the DP: it produces logarithmically rising total cross sections at unit Pomeron intercept. By letting \(\alpha_p(0) > 1 \), we allow for a faster rise of the total cross section, although the intercept is about half that in the DL model since the double pole (or dipole) itself drives the rise in energy. A supercritical Pomeron trajectory, \(\alpha_p(0) > 1 \) in the DP is required by the observed rise of the ratio \(\sigma_{el} / \sigma_{tot} \), or, equivalently, departure form geometrical scaling. The dipole Pomeron produces logarithmically rising total cross sections and nearly constant ratio of \(\sigma_{el} / \sigma_{tot} \) at unit Pomeron intercept, \(\alpha_p(0) = 1 \). In addition this mild logarithmic increase of \(\sigma_{tot} \) does not supported by the result of the last experiment at LHC for energy 7 TeV \(\sigma_{tot} = (98.3 \pm 2.8 \pm 0.02) \text{mb} \) [2]. Along with the rise of the ratio \(\sigma_{el} / \sigma_{tot} \) beyond the SPS energies requires a supercritical DP intercept, \(\alpha_p(0) = 1 + \delta \), where \(\delta \) is a small parameter \(\alpha_p(0) \sim 0.05 \).

2. The model

We use the normalization:

\[
\frac{d\sigma}{dt} = \frac{\pi}{s} |A(s,t)|^2 \quad \text{and} \quad \sigma_{tot} = \frac{4\pi}{s} \ln A(s,t) \big|_{t=0} \tag{2}
\]

Neglecting spin dependence, the invariant proton(antiproton)-proton elastic scattering amplitude is that of Eq. (1). The secondary Reggeons are parametrized in a standard way with linear Regge trajectories and exponential residua, where \(R \) denotes \(f \) or \(o \) – the principal non-leading contributions to \(pp \) or \(\overline{p}p \) scattering:

\[
A_R(s,t) = a_R e^{-i\pi a_R(t)/2} e^{b_R t} (s,s_0)^{s_R(t)} \tag{3}
\]

with handbook slopes \(\alpha_R'(t) = 0.84 \) and \(\alpha_R''(t) = 0.93 \). The values of other parameters of the Reggeons are quoted in Table 1. As argued in the Introduction, the Pomeron is a dipole in the \(j \)-plane

\[
A_p(s,t) = \frac{d}{d\alpha_p} \left[e^{-i\pi \alpha_p/2} G(\alpha_p)(s,s_0)^{s_p(t)} \right] = e^{i\pi \alpha_p(t)/2} (s,s_0)^{s_p(t)} G(\alpha_p) + (L - i\pi/2)G(\alpha_p) \tag{4}
\]

Since the first term in squared brackets determines the shape of the cone, one fixes

\[
G(\alpha_p) = -a_p e^{b_p[\alpha_p-1]} \tag{5}
\]

where \(G(\alpha_p) \) is recovered by integration, and, as a consequence, the Pomeron amplitude Eq. (4) can be rewritten in the following "geometrical" form (for the details of the calculations see [1] and references therein)

\[
A_p(s,t) = i \frac{a_0 s}{b_0 s_0} \left[r_2^2(s) e^{i\pi[s_0(s_0-1)]} - \varepsilon_0 r_2^2(s) e^{i\pi[s_0(s_0-1)]} \right] \tag{6}
\]

where

\[
r_2^2(s) = b_p + L - i\pi/2, \quad r_2^2 = L - i\pi/2, \quad L = \ln(s/s_0) \tag{7}
\]

We use a representative example of the Pomeron trajectory, namely that with a two-pion square-root threshold, Eq. (8), required by t-channel unitarity and accounting for the small-\(t \) "break" [16],

\[
\alpha_p \equiv \alpha_p(t) = 1 + \delta + \alpha_{1p} t - \alpha_{2p} \sqrt{4m^2 - t - 2m}, \tag{8}
\]

where \(m_p \) – pion mass.

\[
A_o(s,t) = \frac{a_0 s}{b_o s_0} \left[r_{10}^2(s) e^{i\pi[s_0(s_0-1)]} - \varepsilon_0 r_{20}^2(s) e^{i\pi[s_0(s_0-1)]} \right] \tag{9}
\]

where

\[
r_{10}^2(s) = b_o + L - i\pi/2, \quad r_{20}^2 = L - i\pi/2, \quad L = \ln(s/s_0) \tag{10}
\]

and

\[
\alpha_o \equiv \alpha_o(t) = 1 + \delta + \alpha_{1o} t - \alpha_{2o} \sqrt{4m^2 - t - 2m}, \tag{11}
\]

The form and properties of Odderon trajectory is the same along with the scale
value \(s_0 = 100 \text{ GeV}^2 \). The adjustable parameters are: \(\delta_p, \alpha_p, \alpha_p, b_p, \varepsilon_p \) for the Pomeron and \(\alpha_D, \delta_D, b_D, \varepsilon_D \) for the Odderon. The results of the fitting procedure is presented below.

3. Fitting procedure

The model contains (at most) 16 parameters (depending on the choice of the trajectories) to be fitted to about 1200 data points simultaneously in \(s \) and \(t \). By a straightforward minimization one has little chances to find the solution, because of possible correlations between different contribution and the parameters, including the \(P-f \) and \(O-\omega \) mixing and the unbalanced role of different contributions/data points. To avoid false \(\chi^2 \) minima, we proceed step-by-step: we first fit the model to the forward data: the total cross section and the ratio \(\rho = \text{Re} A(s,t = 0)/\text{Im} A(s,t = 0) \), starting with the dominant Pomeron contribution with the sub-leading Reggeons, then we perform the fit for first cone and finally adding the Odderon to the whole region of momentum transfer. The compiled data (see [1]) were used in our fitting procedure. The data are: total \(pp \) and \(\bar{p}p \) cross section measurements spanning energy range from 5 to 7 TeV and to 2.0 TeV, respectively. First of all we check the possible best fit for forward scattering, i.e. fitting the total cross section \(\sigma(s) \) and \(\rho(s) \) for a well established set of this type of data plus the new measurement at 7 TeV [2]. We perform also a fit to \(pp \) data alone, see the previous Section, to see whether the observed dynamics of dip can be reproduced by the Pomeron alone. The contribution to the global \(\chi^2 \) from tiny effects, such as the small \(-|t| \) "break" in the first (and second) cone, possible oscillations in the slope of the cone(s) etc. should not corrupt the study of the dynamics in the dip-bump region. The differential elastic scattering cross section cover the momentum transfer range \(|t| = 0.05-15 \text{ GeV}^2 \). Next, we included in the fit the differential cross sections in first cone chosen, somewhat subjectively for \(|t| \leq 0.5 \text{ GeV}^2 \) along with forward data, to determine the remaining parameters of the Reggeons and the Pomeron, \(b_f, b_\omega \) for Reggeons, \(a_p, b_p, \alpha_{1p} \) and \(\alpha_{2p} \) for the Pomeron, important in first cone. Among the parameters of the previous fit we fixed the parameters responsible for rise of the total cross section.

Table 1

Parameters, quality of the fit and predictions of \(\sigma_{tot} \) obtained in the whole interval in \(s \) and \(t \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_p)</td>
<td>269</td>
<td>5</td>
</tr>
<tr>
<td>(b_p, \text{GeV}^2)</td>
<td>6.93</td>
<td>0.06</td>
</tr>
<tr>
<td>(\alpha_{1p}, \text{GeV}^2)</td>
<td>0.474</td>
<td>0.006</td>
</tr>
<tr>
<td>(\alpha_{2p})</td>
<td>0.0269</td>
<td>0.0010</td>
</tr>
<tr>
<td>(\delta_p)</td>
<td>0.0594</td>
<td>0.0031</td>
</tr>
<tr>
<td>(\varepsilon_p)</td>
<td>0.0167</td>
<td>0.0005</td>
</tr>
<tr>
<td>(\alpha_D)</td>
<td>0.160</td>
<td>0.006</td>
</tr>
<tr>
<td>(b_D, \text{GeV}^2)</td>
<td>1.79</td>
<td>0.09</td>
</tr>
<tr>
<td>(\alpha_{1D}, \text{GeV}^2)</td>
<td>0.276</td>
<td>0.008</td>
</tr>
<tr>
<td>(\alpha_{2D})</td>
<td>0.339</td>
<td>0.017</td>
</tr>
<tr>
<td>(\delta_D)</td>
<td>0.106</td>
<td>0.008</td>
</tr>
<tr>
<td>(\varepsilon_D)</td>
<td>-0.223</td>
<td>0.032</td>
</tr>
<tr>
<td>(\alpha_f)</td>
<td>-13.2</td>
<td>0.1</td>
</tr>
<tr>
<td>(\alpha_\omega)</td>
<td>0.790</td>
<td>0.004</td>
</tr>
<tr>
<td>(b_f, \text{GeV}^2)</td>
<td>4.24</td>
<td>0.15</td>
</tr>
<tr>
<td>(A_\omega)</td>
<td>8.51</td>
<td>0.32</td>
</tr>
<tr>
<td>(b_\omega, \text{GeV}^2)</td>
<td>0.473</td>
<td>0.012</td>
</tr>
<tr>
<td>(\chi^2 / \text{dof})</td>
<td>3.55</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{tot}(7\text{ TeV}))</td>
<td>98.1 \pm 0.1</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{tot}(14\text{ TeV}))</td>
<td>111.4 \pm 0.1</td>
<td></td>
</tr>
</tbody>
</table>

5. Conclusions

A basic problem in studying the Pomeron and Odderon is their identification i.e. their discrimination from other contributions. Although this procedure is model-dependent, we try to do this possibly in a general way. The aim of the present paper was to trace the Pomeron and Odderon contribution under conditions accessible within LHC kinematics. This was feasible due to the simplicity of the model, which has the important property of reproducing itself (approximately) against unitarity (absorption) corrections, that are small anyway.

We have presented the "minimal version" of the DP model. It can be further extended, refined and improved, while its basic features...
Figure 1. Differential $\bar{p}p$ (a) and pp (b) cross sections calculated from the model, Eqs. (2)-(9) with the Odderon term (10)-(12) and fitted to the data in the range $-t = 0.1 - 15 \text{GeV}^2$.

Figure 2. (a) Ratio of the real to imaginary part for pp and $p\bar{p}$ scattering amplitude calculated from the model. (b) pp and $p\bar{p}$ total cross sections calculated from the model, Eq. (2)-(9), and fitted to the data in the range $\sqrt{s} = 5 \text{GeV} - 7 \text{TeV}$ model. The red curve presents the $p\bar{p}$ calculation, the blue one corresponds to pp.

Figure 3. Differential pp cross sections fitted without the Odderon term to the ISR data, calculated from the model Section 2.

Figure 4. pp differential cross section at 7 TeV calculated from the model. The dashed line corresponds to the Pomeron contribution, the dotted line to that of the Odderon, and solid line to the differential cross section.
remain intact. The anticipated rescaling of the LHC energy down to that of the highest Tevatron energy may provide a definite answer to the questions concerning the Odderon in pp vs. p̅p̅ scattering, raised in the present paper.

Acknowledgments

We acknowledge fruitful discussions and useful remarks by Tamás Csörgő, László Jenkovszky, Denys Lontkovskyi, Frigyes Nemes and Alexander Shpenik.

The work of D. Himics and J. Turóci was supported by DOMUS, grant DM/31/2012.

REFERENCES